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The quality of a code review inherently 
depends on the selection of the reviewer

Finding the right reviewer for a set of
code changes is always a nontrivial task,
especially for a large-scale, distributed
software development
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5

Developer



Mapping different expertise to individual developers is a 
key requirement for effective code review

6

Developer

Recent research 
studies have 
attempted to 

develop
approaches to 

detect experts in 
specific topics [1]

[1] Identifying experts in software libraries and frameworks among GitHub users, MSR, 2016
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Our rationale is that a piece of code involving 
concurrency is suitable to be reviewed by 

someone who has demonstrated experience 
in dealing with such type of code
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Certification exams of a programming language aim to determine 
the skills and knowledge of a developer in using the key 
capabilities offered by the building blocks of that language

Oracle Java SE and Java EE certification exams for the Java

Thus, certification exams capture the KUs of a programming language
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We map the 
topics and 

subtopics of 
the Java 

Certification 
Exam into 

KUs

Topic Sub-Topic

Create worker threads using an ExecutorServiceCapability  1

Capability  N Use parallel Fork/Join Framework

Concurrency KU
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(1) Data Type KU

(2) Operator and Decision KU

(3) Array KU

(4) Loop KU

(5) Method and Encapsulation KU

(6) Inheritance KU

(7) Advanced Class Design KU

(8) Generics and Collection KU

(9) Functional Interface KU

(10) Stream API KU

(11) Exception KU

(12) Date time API KU

(13) IO KU

(14) NIO KU

(15) Concurrency KU

(16) Database KU

(17) String Processing KU

(18) Localization KU 

(19) Java Persistence KU

(20) Enterprise Java Bean KU

(21) Java Message Service API KU

(22) SOAP Web Service KU

(23) Servlet KU

(24) Java REST API KU

(25) Websocket KU

(26) Java Server Faces KU

(27) Contexts and Dependency 
injection (CDI) KU

(28) Batch Processing KU
JAVA SE KUs

JAVA EE 
KUs



Our objective
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How we can leverage KUs to build expertise-profile for
developers and construct a recommender system
(KUREC) for GitHub pull requests (PRs)



We represent developers’ expertise with KUs that are 
associated with changed files in commits
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(a) Developers' commit activity and the changed files (b) Representation of developer’s expertise with KUs



We collected 290k commit data and 65k pull request data 
from 8 active Java projects in GitHub
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Preliminary Study: Do KUs provide a new lens to study
developers’ expertise?
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Our encouraging results from the preliminary study 
motivate us to build a KU-based reviewer 

recommendation system (KUREC)



We address three research questions (RQs) 
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RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that 
are not matched with ground truth data?
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CHREV distills review contribution into three measures: 
(1) total number of review comments
(2) total number of workdays
(3) recency of the review comments
CHREV generates a score for every developer based on these measures, 
sorts developers decreasing order of the score and recommends top-k 
ones

We construct four baseline recommenders

60

[1] Commit-frequency-based recommender (CF)
(MSR 2013)

[2] Review-frequency-based recommender (RF)
(APSEC 2014)

[3] Modification-expertise-based recommender (ER)
(CCSC 2000)

[4] Review-history-based recommender (CHREV)
(TSE 2016)

The recommender sorts developers in decreasing order of commit 
counts and recommends the top-k ones

The recommender sorts developers in decreasing order of review 
counts and recommends the top-k ones

The recommender sorts developers in reverse chronological
order based on the date who last modified the changed file in a given
PR. Finally, ER recommends the top-k ranked developers
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the PR r and returns 0 otherwise.

Top-k Accuracy
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Here, R denotes the set of PRs in the 
test dataset.  The isCorrect(r, Top−k) 
returns 1 if at least one of top-k 
developers is the correct reviewer of 
the PR r and returns 0 otherwise.

Top-k Accuracy

Here, i is the position of each developer 
in the recommended list of developers, 
and s(i) is the sequence number of the 
correct developer at position i. 
The rel(i) returns 1 if the ith developer 
in the list is correct and 0 otherwise.

Mean Average 
Precision (MAP)
MAP @k is the average of AP@k over all the PRs in the test 
dataset
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The top Scott-Knott ESD-
ranked recommenders are  
KUREC and RF in both  
top-k accuracy and MAP

The interquartile range of 
KUREC is smaller than RF 

in both metrics

KUREC is 
more stable 
than RF and 
outperforms 

the 
remaining 

three 
baselines 

KUREC is more 

stable 

than RF in Top-

K accuracy
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Summary of RQ1

KUREC  outperforms the remaining three baselines 
and has a more stable performance compared 
to RF, which is a desired property in practice



We address three research questions (RQs) 
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RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that 
are not matched with ground truth data?
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To construct a combined recommender by leveraging the recommendations of 
different recommenders, we are motivated by the work of Malik and Hassan [1]

[1] Malik H, Hassan AE, “Supporting software evolution using adaptive change propagation heuristics”, ICSME, 2008
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In this approach, all the recommenders uses a Best Recommender System Table 
(BRST) to track the best-performing recommender.

We implement three techniques to update the BRST and these are our new 
recommenders based on heuristics 

To construct a combined recommender by leveraging the recommendations of 
different recommenders, we are motivated by the work of Malik and Hassan [1]

[1] Malik H, Hassan AE, “Supporting software evolution using adaptive change propagation heuristics”, ICSME, 2008
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(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes 
the best performing recommender. The recommender with the 
highest count is selected for recommendation. 
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(2) Adaptive Recency Technique (AD_REC) The BRST stores the best-performing recommender that is identified 
in the last PR.

(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes 
the best performing recommender. The recommender with the 
highest count is selected for recommendation. 
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(2) Adaptive Recency Technique (AD_REC) The BRST stores the best-performing recommender that is identified 
in the last PR.

(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes 
the best performing recommender. The recommender with the 
highest count is selected for recommendation. 

(3) Adaptive Hybrid Technique (AD_HYBRID) We select the recommender that has the highest count in the BRST 
among the last 10 previous PRs. 
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Summary of RQ2

Combining the KU-based recommender (KUREC) 
with the baselines in a straight-forward manner 

results in better-performing recommenders



We address three research questions (RQs) 
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RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that 
are not matched with ground truth data?
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We consider a recommendation to be reasonable if the 
recommended individual had recent (last six months) 

development experience with the majority (50%) of the files 
included in the PR in question
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Summary of RQ3

KUREC is the recommender with the highest percentage of 
reasonable recommendations. Yet, AD_FREQ strikes the best 

balance between sticking to the ground truth and issuing 
reasonable recommendations when those deviate from that 

ground truth 
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