
Using Knowledge Units of Programming Languages
to Recommend Reviewers for Pull Requests:

An Empirical Study

Md Ahasanuzzaman Gustavo A. Oliva Ahmed E. Hassan

Finding the right reviewer for reviewing a piece of
code is a difficult task

2

Finding the right reviewer for reviewing a piece of
code is a difficult task

3

The quality of a code review inherently
depends on the selection of the reviewer

Finding the right reviewer for reviewing a piece of
code is a difficult task

4

The quality of a code review inherently
depends on the selection of the reviewer

Finding the right reviewer for a set of
code changes is always a nontrivial task,
especially for a large-scale, distributed
software development

Mapping different expertise to individual developers is a
key requirement for effective code review

5

Developer

Mapping different expertise to individual developers is a
key requirement for effective code review

6

Developer

Recent research
studies have
attempted to

develop
approaches to

detect experts in
specific topics [1]

[1] Identifying experts in software libraries and frameworks among GitHub users, MSR, 2016

We focus on a key facet of expertise,
which is programming language (PL) expertise

7

We focus on a key facet of expertise,
which is programming language (PL) expertise

8

Our rationale is that a piece of code involving
concurrency is suitable to be reviewed by

someone who has demonstrated experience
in dealing with such type of code

To capture the PL expertise of developers, we
introduce the notion of Knowledge Units (KUs) of PL

9

To capture the PL expertise of developers, we
introduce the notion of Knowledge Units (KUs) of PL

10

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given programming
language

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

11

12

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

13

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

14

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

15

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

16

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

17

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

18

Knowledge Unit (KU):

A Knowledge Unit (KU)
is a cohesive set of key
capabilities that are
offered by one or more
building blocks of a
given

We operationalize our KUs via certification
exams for the Java programming language

19

We operationalize our KUs via certification
exams for the Java programming language

20

Oracle Java SE and Java EE certification exams for the Java

We operationalize our KUs via certification
exams for the Java programming language

21

Certification exams of a programming language aim to determine
the skills and knowledge of a developer in using the key
capabilities offered by the building blocks of that language

Oracle Java SE and Java EE certification exams for the Java

We operationalize our KUs via certification
exams for the Java programming language

22

Certification exams of a programming language aim to determine
the skills and knowledge of a developer in using the key
capabilities offered by the building blocks of that language

Oracle Java SE and Java EE certification exams for the Java

Thus, certification exams capture the KUs of a programming language

23

We map the
topics and

subtopics of
the Java

Certification
Exam into

KUs

24

We map the
topics and

subtopics of
the Java

Certification
Exam into

KUs

Topic Sub-Topic

25

We map the
topics and

subtopics of
the Java

Certification
Exam into

KUs

Topic Sub-Topic

Concurrency KU

26

We map the
topics and

subtopics of
the Java

Certification
Exam into

KUs

Topic Sub-Topic

Create worker threads using an ExecutorServiceCapability 1

Capability N Use parallel Fork/Join Framework

Concurrency KU

We identify 28 KUs of the Java
programming language

27

We identify 28 KUs of the Java
programming language

28

(1) Data Type KU

(2) Operator and Decision KU

(3) Array KU

(4) Loop KU

(5) Method and Encapsulation KU

(6) Inheritance KU

(7) Advanced Class Design KU

(8) Generics and Collection KU

(9) Functional Interface KU

(10) Stream API KU

(11) Exception KU

(12) Date time API KU

(13) IO KU

(14) NIO KU

(15) Concurrency KU

(16) Database KU

(17) String Processing KU

(18) Localization KU

JAVA SE KUs

We identify 28 KUs of the Java
programming language

29

(1) Data Type KU

(2) Operator and Decision KU

(3) Array KU

(4) Loop KU

(5) Method and Encapsulation KU

(6) Inheritance KU

(7) Advanced Class Design KU

(8) Generics and Collection KU

(9) Functional Interface KU

(10) Stream API KU

(11) Exception KU

(12) Date time API KU

(13) IO KU

(14) NIO KU

(15) Concurrency KU

(16) Database KU

(17) String Processing KU

(18) Localization KU

(19) Java Persistence KU

(20) Enterprise Java Bean KU

(21) Java Message Service API KU

(22) SOAP Web Service KU

(23) Servlet KU

(24) Java REST API KU

(25) Websocket KU

(26) Java Server Faces KU

(27) Contexts and Dependency
injection (CDI) KU

(28) Batch Processing KU
JAVA SE KUs

JAVA EE
KUs

Our objective

30

How we can leverage KUs to build expertise-profile for
developers and construct a recommender system
(KUREC) for GitHub pull requests (PRs)

We represent developers’ expertise with KUs that are
associated with changed files in commits

31

We represent developers’ expertise with KUs that are
associated with changed files in commits

32

(a) Developers' commit activity and the changed files

We represent developers’ expertise with KUs that are
associated with changed files in commits

33

(a) Developers' commit activity and the changed files (b) Representation of developer’s expertise with KUs

We represent developers’ expertise with KUs that are
associated with changed files in commits

34

(a) Developers' commit activity and the changed files (b) Representation of developer’s expertise with KUs

We represent developers’ expertise with KUs that are
associated with changed files in commits

35

(a) Developers' commit activity and the changed files (b) Representation of developer’s expertise with KUs

We collected 290k commit data and 65k pull request data
from 8 active Java projects in GitHub

36

Preliminary Study: Do KUs provide a new lens to study
developers’ expertise?

37

38

KUs offer a
fine-grained

lens to
study

developers’
expertise

39

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

40

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

41

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

42

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

A few clusters with a
large number of

developers

43

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

A few clusters with a
large number of

developers

Many clusters with a
few developers

44

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

57% of the
generated clusters
are singleton (i.e.,
the size of these
clusters is one)

45

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

57% of the
generated clusters
are singleton (i.e.,
the size of these
clusters is one)

Singleton
cluster

46

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

57% of the
generated clusters
are singleton (i.e.,
the size of these
clusters is one)

Each cluster hosts
a set of developers

with unique KU-
based expertise

profile

KUs offer a
fine-grained

lens to
study

developers’
expertise

Developer clusters with KU-based expertise profile

KUs identify 71
different clusters

of developers

The Gini index for
clusters’ size is
0.96, indicating

that there exists a
very strong
inequality

57% of the
generated clusters
are singleton (i.e.,
the size of these
clusters is one)

Each cluster hosts
a set of developers

with unique KU-
based expertise

profile 47

Our encouraging results from the preliminary study
motivate us to build a KU-based reviewer

recommendation system (KUREC)

We address three research questions (RQs)

48

RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that
are not matched with ground truth data?

We address three research questions (RQs)

49

RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that
are not matched with ground truth data?

Our approach for building KUREC recommender

50

Our approach for building KUREC recommender

51

PR
Dataset

Commit
Dataset

Construct a KU-
based development
expertise profile for

all developers

Construct a KU-
based review

expertise profile for
all developers

Calculate the
expertise score of
every developer

Recommend top-k
developers

List of
recommended
developers of

KUREC

Our approach for building KUREC recommender

52

PR
Dataset

Commit
Dataset

Construct a KU-
based development
expertise profile for

all developers

Construct a KU-
based review

expertise profile for
all developers

Calculate the
expertise score of
every developer

Recommend top-k
developers

List of
recommended
developers of

KUREC

Our approach for building KUREC recommender

53

PR
Dataset

Commit
Dataset

Construct a KU-
based development
expertise profile for

all developers

Construct a KU-
based review

expertise profile for
all developers

Calculate the
expertise score of
every developer

Recommend top-k
developers

List of
recommended
developers of

KUREC

Our approach for building KUREC recommender

54

PR
Dataset

Commit
Dataset

Construct a KU-
based development
expertise profile for

all developers

Construct a KU-
based review

expertise profile for
all developers

Calculate the
expertise score of
every developer

Recommend top-k
developers

List of
recommended
developers of

KUREC

Our approach for building KUREC recommender

55

PR
Dataset

Commit
Dataset

Construct a KU-
based development
expertise profile for

all developers

Construct a KU-
based review

expertise profile for
all developers

Calculate the
expertise score of
every developer

Recommend top-k
developers

List of
recommended
developers of

KUREC

We construct four baseline recommenders

56

We construct four baseline recommenders

57

[1] Commit-frequency-based recommender (CF)
(MSR 2013)

The recommender sorts developers in decreasing order of commit
counts and recommends the top-k ones

We construct four baseline recommenders

58

[1] Commit-frequency-based recommender (CF)
(MSR 2013)

[2] Review-frequency-based recommender (RF)
(APSEC 2014)

The recommender sorts developers in decreasing order of commit
counts and recommends the top-k ones

The recommender sorts developers in decreasing order of review
counts and recommends the top-k ones

We construct four baseline recommenders

59

[1] Commit-frequency-based recommender (CF)
(MSR 2013)

[2] Review-frequency-based recommender (RF)
(APSEC 2014)

[3] Modification-expertise-based recommender (ER)
(CCSC 2000)

The recommender sorts developers in decreasing order of commit
counts and recommends the top-k ones

The recommender sorts developers in decreasing order of review
counts and recommends the top-k ones

The recommender sorts developers in reverse chronological
order based on the date who last modified the changed file in a given
PR. Finally, ER recommends the top-k ranked developers

CHREV distills review contribution into three measures:
(1) total number of review comments
(2) total number of workdays
(3) recency of the review comments
CHREV generates a score for every developer based on these measures,
sorts developers decreasing order of the score and recommends top-k
ones

We construct four baseline recommenders

60

[1] Commit-frequency-based recommender (CF)
(MSR 2013)

[2] Review-frequency-based recommender (RF)
(APSEC 2014)

[3] Modification-expertise-based recommender (ER)
(CCSC 2000)

[4] Review-history-based recommender (CHREV)
(TSE 2016)

The recommender sorts developers in decreasing order of commit
counts and recommends the top-k ones

The recommender sorts developers in decreasing order of review
counts and recommends the top-k ones

The recommender sorts developers in reverse chronological
order based on the date who last modified the changed file in a given
PR. Finally, ER recommends the top-k ranked developers

We use two popular metrics to evaluate the performance
of recommenders

61

We use two popular metrics to evaluate the performance
of recommenders

62

Here, R denotes the set of PRs in the
test dataset. The isCorrect(r, Top−k)
returns 1 if at least one of top-k
developers is the correct reviewer of
the PR r and returns 0 otherwise.

Top-k Accuracy

We use two popular metrics to evaluate the performance
of recommenders

63

Here, R denotes the set of PRs in the
test dataset. The isCorrect(r, Top−k)
returns 1 if at least one of top-k
developers is the correct reviewer of
the PR r and returns 0 otherwise.

Top-k Accuracy

Here, i is the position of each developer
in the recommended list of developers,
and s(i) is the sequence number of the
correct developer at position i.
The rel(i) returns 1 if the ith developer
in the list is correct and 0 otherwise.

Mean Average
Precision (MAP)
MAP @k is the average of AP@k over all the PRs in the test
dataset

KUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

64

KUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

65

1 2 3 4

66

1 2 3 4

The top Scott-Knott ESD-
ranked recommenders are
KUREC and RF in both
top-k accuracy and MAPKUREC is

more stable
than RF and
outperforms

the
remaining

three
baselines

67

1 2 3 4

The top Scott-Knott ESD-
ranked recommenders are
KUREC and RF in both
top-k accuracy and MAP

The interquartile range of
KUREC is smaller than RF

in both metrics

KUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

68

1 2 3 4

The top Scott-Knott ESD-
ranked recommenders are
KUREC and RF in both
top-k accuracy and MAP

The interquartile range of
KUREC is smaller than RF

in both metrics

For MAP, the interquartile
range of KUREC is 0.25
whereas the interquartile
range of RF is 0.56

KUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

69

1 2 3 4

The top Scott-Knott ESD-
ranked recommenders are
KUREC and RF in both
top-k accuracy and MAP

The interquartile range of
KUREC is smaller than RF

in both metrics

For MAP, the interquartile
range of KUREC is 0.25
whereas the interquartile
range of RF is 0.56

KUREC is

more

stable

than RF in

MAPKUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

70

The top Scott-Knott ESD-
ranked recommenders are
KUREC and RF in both
top-k accuracy and MAP

The interquartile range of
KUREC is smaller than RF

in both metrics

KUREC is
more stable
than RF and
outperforms

the
remaining

three
baselines

KUREC is more

stable

than RF in Top-

K accuracy

71

Summary of RQ1

KUREC outperforms the remaining three baselines
and has a more stable performance compared
to RF, which is a desired property in practice

We address three research questions (RQs)

72

RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that
are not matched with ground truth data?

We construct three recommenders by combining KUREC
with the baseline recommenders

73

We construct three recommenders by combining KUREC
with the baseline recommenders

74

To construct a combined recommender by leveraging the recommendations of
different recommenders, we are motivated by the work of Malik and Hassan [1]

[1] Malik H, Hassan AE, “Supporting software evolution using adaptive change propagation heuristics”, ICSME, 2008

We construct three recommenders by combining KUREC
with the baseline recommenders

75

In this approach, all the recommenders uses a Best Recommender System Table
(BRST) to track the best-performing recommender.

To construct a combined recommender by leveraging the recommendations of
different recommenders, we are motivated by the work of Malik and Hassan [1]

[1] Malik H, Hassan AE, “Supporting software evolution using adaptive change propagation heuristics”, ICSME, 2008

We construct three recommenders by combining KUREC
with the baseline recommenders

76

In this approach, all the recommenders uses a Best Recommender System Table
(BRST) to track the best-performing recommender.

We implement three techniques to update the BRST and these are our new
recommenders based on heuristics

To construct a combined recommender by leveraging the recommendations of
different recommenders, we are motivated by the work of Malik and Hassan [1]

[1] Malik H, Hassan AE, “Supporting software evolution using adaptive change propagation heuristics”, ICSME, 2008

We construct three recommenders by combining KUREC
with the baseline recommenders

77

(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes
the best performing recommender. The recommender with the
highest count is selected for recommendation.

We construct three recommenders by combining KUREC
with the baseline recommenders

78

(2) Adaptive Recency Technique (AD_REC) The BRST stores the best-performing recommender that is identified
in the last PR.

(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes
the best performing recommender. The recommender with the
highest count is selected for recommendation.

We construct three recommenders by combining KUREC
with the baseline recommenders

79

(2) Adaptive Recency Technique (AD_REC) The BRST stores the best-performing recommender that is identified
in the last PR.

(1) Adaptive Frequency Technique (AD_FREQ)
The BRST stores the frequency of each recommender that becomes
the best performing recommender. The recommender with the
highest count is selected for recommendation.

(3) Adaptive Hybrid Technique (AD_HYBRID) We select the recommender that has the highest count in the BRST
among the last 10 previous PRs.

All the
combined

recommenders
outperform
individual

recommenders

80

All the
combined

recommenders
outperform
individual

recommenders

81

All the
combined

recommenders
outperform
individual

recommenders

82

All combined
recommenders are

ranked 1

83

Summary of RQ2

Combining the KU-based recommender (KUREC)
with the baselines in a straight-forward manner

results in better-performing recommenders

We address three research questions (RQs)

84

RQ1: How accurately can KUREC recommend code reviewers in
pull requests?

RQ2: Can KUREC be made more accurate by combining it with
existing recommenders?

RQ3: How reasonable are those recommendations of KUREC that
are not matched with ground truth data?

We study the recommendations of a recommender
that does not match with ground truth data

85

P

Pull Request

We study the recommendations of a recommender
that does not match with ground truth data

86

Recommender
System

(e.g., KUREC)

P

Pull Request

We study the recommendations of a recommender
that does not match with ground truth data

87

Recommender
System

(e.g., KUREC)

P
1. X
2. Y
3. Z

Actual Reviewers (Ground Truth data)
Pull Request

We study the recommendations of a recommender
that does not match with ground truth data

88

Recommender
System

(e.g., KUREC)

P
1. X
2. Y
3. Z

1. P
2. Q
3. R

Actual Reviewers (Ground Truth data)

Recommended Reviewers

Recommend

Pull Request

We study the recommendations of a recommender
that does not match with ground truth data

89

Recommender
System

(e.g., KUREC)

P
1. X
2. Y
3. Z

1. P
2. Q
3. R

Actual Reviewers (Ground Truth data)

Recommended Reviewers

Does not match

Recommend

Pull Request

We study the recommendations of a recommender
that does not match with ground truth data

90

Recommender
System

(e.g., KUREC)

P
1. X
2. Y
3. Z

1. P
2. Q
3. R

Actual Reviewers (Ground Truth data)

Recommended Reviewers

Does not match

Are these
recommendation

reasonable?

Recommend

Pull Request

We consider a recommendation to be reasonable if the
recommended individual had recent (last six months)

development experience with the majority (50%) of the files
included in the PR in question

91

AD_FREQ strikes the best balance between sticking to the
ground truth and reasonable recommendations

92

Recommender Percentage of Reasonable
recommendations

KUREC 63.4%

ER 60.9%

AD_FREQ 59.4%

AD_HYBRID 54.3%

AD_REC 54.2%

CHREV 32.7%

CF 25.4%

RF 15.2%

AD_FREQ strikes the best balance between sticking to the
ground truth and reasonable recommendations

93

Recommender Percentage of Reasonable
recommendations

KUREC 63.4%

ER 60.9%

AD_FREQ 59.4%

AD_HYBRID 54.3%

AD_REC 54.2%

CHREV 32.7%

CF 25.4%

RF 15.2%

AD_FREQ strikes the best balance between sticking to the
ground truth and reasonable recommendations

94

Recommender Percentage of Reasonable
recommendations

KUREC 63.4%

ER 60.9%

AD_FREQ 59.4%

AD_HYBRID 54.3%

AD_REC 54.2%

CHREV 32.7%

CF 25.4%

RF 15.2%

The best-performing
baseline RF is the
lowest in reasonable
recommendation

AD_FREQ strikes the best balance between sticking to the
ground truth and reasonable recommendations

95

Recommender Percentage of Reasonable
recommendations

KUREC 63.4%

ER 60.9%

AD_FREQ 59.4%

AD_HYBRID 54.3%

AD_REC 54.2%

CHREV 32.7%

CF 25.4%

RF 15.2%

The best-performing
baseline RF is the
lowest in reasonable
recommendation

AD_FREQ strikes the
best balance between
sticking to the ground
truth and reasonable
recommendations

96

Summary of RQ3

KUREC is the recommender with the highest percentage of
reasonable recommendations. Yet, AD_FREQ strikes the best

balance between sticking to the ground truth and issuing
reasonable recommendations when those deviate from that

ground truth

97

98

99

100

101

md.ahasanuzzaman@queensu.ca

