
Program Analysis of
WebAssembly Applications
Quentin Stiévenart

WebAssembly

“WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based
virtual machine. Wasm is designed as a portable compilation target for programming
languages, enabling deployment on the web for client and server applications.”

 – https://webassembly.org/

2

WebAssembly Usage in a Nutshell

3

program.c

program.wasm
WASM compiler

program.rs

program.go

WebAssembly Compilation
Example at: https://mbebenita.github.io/WasmExplorer/

4

https://mbebenita.github.io/WasmExplorer/

Today’s Use of WebAssembly: Web Applications

5earth.google.com

Today’s Use of WebAssembly: IoT

6

Wen and Weber, PerCom 2020

Today’s Use of WebAssembly: Embedded Systems

7

Gurdeep Singh and Scholliers, MPLR’19

Today’s Use of WebAssembly: Smart Contract Platforms

8

Today’s Use of WebAssembly: Browser Add-Ons

9

WebAssembly Support
https://caniuse.com/wasm

10

Language Support for WebAssembly
https://github.com/appcypher/awesome-wasm-langs

11

Performance
Plenty of room for improvements, while JS engines have been heavily optimized

As input size increases, JS
becomes faster (JIT)

Wang, Weihang. "Empowering Web Applications with
WebAssembly: Are We There Yet?." 2021 36th IEEE/ACM
International Conference on Automated Software Engineering
(ASE). IEEE, 2021.

Johansson, Ludwig. "Ray tracing in WebAssembly, a
comparative benchmark." (2022).

Ketonen, Teemu. "Examining performance benefits of
real-world WebAssembly applications: a quantitative
multiple-case study." (2022).

On a real-world
application (the Micrio
storytelling platform)

On a raytracer

12

Secure Design of WebAssembly: Sandboxing
Applications are sandboxed

- Can’t escape expect through appropriate APIs
- Isolated from each other

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by
default, composable future for WebAssembly" (2019)

13

Vulnerabilities
How can we attack a WebAssembly binary?

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

14

End-to-End Case Study: XSS in the Browser
Including vulnerable code may lead to XSS

Example: image manipulation website that depends on vulnerable version of libpng

- Specific version of libpng suffers from a buffer overflow

Overwrites the img_tag buffer

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

15

End-to-End Case Study: Arbitrary File Write in VM
Some attacks impossible on native code become possible in WebAssembly

Example: writing to a file

Read-only in native code
Can be overwritten in WASM

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

16

Tools for WebAssembly
There is a lot of ongoing research towards tool support for WebAssembly in order to

- Analyze binaries
- Increase their security
- Perform automated testing
- …

17

Simplicity of WebAssembly: Size of the Specification
WebAssembly core is a small, well-defined standard

Semantics defined formally, along with a reference implementation

Specification size (number of pages)

let rec step (c : config) : config =
 let {frame; code = vs, es; _} = c in
 let e = List.hd es in
 let vs', es' =
 match e.it, vs with
 | Plain e', vs ->
 (match e', vs with
 ...
 | LocalGet x, vs ->
 !(local frame x) :: vs, [] 18

👍 Feasible to support the entirety of the standard

Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)
2. Direct function calls
3. Function returns
4. Indirect function calls

Design of WebAssembly: Structured Control Flow
WebAssembly has no instruction for arbitrary jumps

Local control-flow instructions:

- Scopes: block, loop, if
- Jumps: br, br_if, br_table

block

 i32.const 1

 if

 br 0

 else

 br 1

 end

end

Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)
2. Direct function calls
3. Function returns
4. Indirect function calls

✔

Design of WebAssembly: Direct Function Calls
(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (func (;0;) (type 0) (param i32 i32) (result i32)

 local.get 0

 local.get 1

 i32.add)

 (func (;1;) (type 0) (param i32 i32) (result i32)

 i32.const 1

 i32.const 2

 call 0))

Implicitly manages the call
stack. The program has no way
of accessing it through other
means.

Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)
2. Direct function calls
3. Function returns
4. Indirect function calls

✔
✔
✔ In x86, the return address is

stored on the stack, and can be
overwritten by an attacker in a
vulnerable program

Design of WebAssembly: Indirect Function Calls

(func (;0;) (type 0) (param i32) (result i32)

 local.get 0

 i32.load

 call_indirect (type 0))

(func (;1;) (type 0) (param i32) (result i32) ...)

(func (;2;) (type 0) (param i32) (result i32) ...)

(func (;3;) (type 1) (param i32 i32) (result i32) ...)

(table (;0;) 4 4 funcref)

(elem (;0;) (i32.const 1) 1 2 3) Possible targets of indirect calls, but can
be mutated by host environment

Call target must have the right type

❌

Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)
2. Direct function calls
3. Function returns
4. Indirect function calls

✔
✔
✔~

👍 Less branching points in static analysis

Design of WebAssembly: Memory Model
WebAssembly programs have a single “linear memory”, isolated from the rest

Pointer arithmetic etc. are still doable, but potential damages are lessened

Linear memory is initialized to 0

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by
default, composable future for WebAssembly" (2019)

(func (;memory-usage;) (type 0)
 (param i32) (result i32)
 global.get 0 ;; [global]
 local.get 0 ;; [arg0, global]
 i32.store ;; [] binds @global to arg0 in memory
 global.get 0 ;; [global]
 i32.load ;; [arg0] loads @global from memory
)

👎 Pointer analysis remains a challenge

WebAssembly in Practice: WASI
For stand-alone applications, it is necessary to interface with the operating system

WASI is currently experimental

int main() {

 printf("Hello, world!\n");

}

27

👎 Need to analyze the runtime

WebAssembly in Practice: Interfacing with JavaScript
WebAssembly object provides way of interacting with WebAssembly

WebAssembly.instantiateStreaming(fetch('myModule.wasm'), importObject).then(obj => {

 obj.instance.exports.exported_func();

 var i32 = new Uint32Array(obj.instance.exports.memory.buffer);

 var table = obj.instance.exports.table;

 console.log(table.get(0)());

});

28

WebAssembly in Practice: Interfacing with JavaScript
(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (type (;1;) (func (param i32 i32 i32) (result i32)))

 (type (;2;) (func (param i32 i32)))

 (import "./module.js" "add" (func (;0;) (type 0)))

 (func (;1;) (type 0) (param i32 i32) (result i32)

 i32.const 1

 i32.const 2

 call 0)

 …)
var importObject = {

 imports: { add: (x, y) => { return x + y; } }

};
29

👎 Need to support multi-lingual applications

Wassail: WebAssembly Static Analysis and Inspection Library

https://github.com/acieroid/wassail

30

