Program Analysis of
WebAssembly Applications

Quentin Stiévenar t

WebAssembly

“WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based
virtual machine. Wasm is designed as a portable compilation target for programming
languages, enabling deployment on the web for client and server applications.”

— https://webassembly.org/

WebAssembly Usage in a Nutshell

program.c

E WASM compiler

program.rs

program.wasm

program.go

WebAssembly Compilation

Example at:

https://mbebenita.github.io/WasmExplorer/

Today’s Use of WebAssembly: Web Applications

earth.google.com

Today’s Use of WebAssembly: loT

Wasmachine: Bring [0T up to Speed with A
WebAssembly OS

Elliott Wen
The University of Auckland
jwen929 @aucklanduni.ac.nz

Abstract—WebAssembly is a new-generation low-level byte-
code format and gaining wide adoption in browser-centric ap-
plications. Nevertheless, WebAssembly is originally designed as
a general approach for running binaries on any runtime envi-
ronments more than the web. This paper presents Wasmachine,
an OS aiming to efficiently and securely execute WebAssembly
applications in IoT and Fog devices with constrained resources.
Wasmachine achieves more efficient execution than conventional
OSs by compiling WebAssembly ahead of time to native binary
and executing it in kernel mode for zero-cost system calls.
Wasmachine maintains high security by not only exploiting many
sandboxing features of WebAssembly but also implementing the
OS kernel in Rust to ensure memory safety. We benchmark
commonly-used IoT and fog applications and the results show
that Wasmachine is up to 11% faster than Linux.

I. INTRODUCTION

Gerald Weber
The University of Auckland
g.weber@aucklanduni.ac.nz

A conventional WebAssembly runtime, as shown in Fig I
(a), is a program that translates WebAssembly binary instruc-
tions to native CPU machine codes before execution. The
translation is most achieved in a just-in-time (JIT) fashion;
when a WebAssembly application starts, it will be first inter-
preted, and after a while, methods frequently executed will
be compiled to native codes to improve execution efficiency.
JIT enables fast start up time but less efficient codes due to
limited time that can be spent on code optimization. Using JIT
is reasonable in the context of web browsing, where startup
time may significantly affect user experience. However, it is
suboptimal for IoT or fog computing, where code efficiency
is preferred.

A runtime also assists a WebAssembly program with sys-
tem call operations (e.g.. networking or file access). Specifi-

Wen and Weber,

PerCom 2020

Today’s Use of WebAssembly: Embedded Systems

S8 vl WA
RDUINO

Gurdeep Singh and Scholliers, MPLR’19

Today’s Use of WebAssembly: Smart Contract Platforms

Ewasm - Ethereum
Webassembly v

Today’s Use of WebAssembly: Browser Add-Ons

& gorhill /uBlock (Public

<> Code Issues 35 Pull requests

¥ master v | uBlock/src/js/wasm/

' gorhill Refactor hntrie to avoid the need f...

README.md
biditrie.wasm
biditrie.wat
hntrie.wasm

hntrie.wat

1

Actions

on Aug 10, 2021) History

4 years ago

8 months ago

8 months ago

WebAssembly Support

https://caniuse.com/wasm

Usage % of all users s
WebAssembly & -otHer
Global 93.06%
WebAssembly or "wasm" is a new portable, size- and load-time-

efficient format suitable for compilation to the web.

[@Vgd Il Usage relative Date relative Filtered WNIN &

uc
& Safari on* * Android* O g o Firefox f B S Baid KaioS
IE Edge Firefox ~ Chrome Safari Opera ai%rlson Opera Mini 2n¢ro! pera for IreTox 1ok for 2mang 24 Ao al

Browser Mobile Android Android Android Internet Browser Browser Browser

EDCTEMED ERTEEm
|

Language Support for WebAssembly

https://github.com/appcypher/awesome-wasm-langs

* Net Forest “ Never

“ AssemblyScript w Forth Nim
Astre Unmaintained . Go Ocaml

- Brainfuck Grain “ Pascal % Swift

§ C Haskell % Perl “ Furbeseript Unmaintained

& cu 8 fava % PHP TypeScript

& C++ “ JavaScript Plorth ,": Wahr Unmaintained

z © Walt Unmaintained

* Clean Julia Poetry “ Wam Unmaintained
Co “ {gfis Unmaintained “ Python e

- COBOL “ Kotlin/Native “ Prolog “ WebAssembly

% D Kou “ Ruby Wraeket Unmaintained

“ Eel % Lisp . Rust W Zig

“ Elixir * Lobster “. Scheme

“ F# ® Lua “, Scopes

Faust “ Lys “. Speedyfs Unmaintained

Performance

Plenty of room for improvements, while JS engines have been heavily optimized

As input size increases, JS
becomes faster (JIT)

Input Size | SD #° SD gmean’] SU # SU gmean’ [All gmean®

Extra-small 0 0x | 30 35.30x 1 35.30x 1
Small 1 1.53x | 29 8.35x 1 7.67x T
Medium 17 1:53x 13 3.68x 1 1.38x 1
Large 15 1.67x | 15 1.16x 1 0.83x 1
Extra-large 17 1:22x | 13 1.08x 1 0.92x 1

Wang, Weihang. "Empowering Web Applications with
WebAssembly: Are We There Yet?." 2021 36th IEEE/ACM
International Conference on Automated Software Engineering
(ASE). IEEE, 2021.

Execution time (ms)

On a real-world
application (the Micrio
storytelling platform)

On a raytracer

Average FPS

60000 80%
‘ — 2.9 17.6521

3.0 (Wasm) 70%

50000 e CPU decrease

60%

40000 |
50%
30000 40%

30%

20000 5.78804

10000

native wasm js
Scripting Rendering Painting System Cumulative
sum
Ketonen, Teemu. "Examining performance benefits of
real-world WebAssembly applications: a quantitative

multiple-case study." (2022).

Johansson, Ludwig. "Ray tracing in WebAssembly, a
comparative benchmark." (2022).

Secure Design of WebAssembly: Sandboxing

Applications are sandboxed

- Can’t escape expect through appropriate APIs
- Isolated from each other

Here, you can use
getrandom... but to ensure
everyone's safety, that's the

only one I'm giving you

/ / sandboxing

kgetrandom

(usb_make_path
Y p en clock
getrandom

write

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by
default, composable future for WebAssembly" (2019)

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

n n n
Vu I n e ra b I I Itl es Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

How can we attack a WebAssembly binary? ¢ | FORTI%(§0URCE o

= Heap metadata
g Buffer overflow on Stack overflow of corruption é*‘
% unmanaged stack @' | unmanaged stack @’ e
£ N | safe unljnking, etc.&7
E | Stack)(mries b K

v

Unmappe€d pages
= 7 : | e%(‘p —
© 9 Manged, safe AT
?3 return addresses J) I /%@ b
E | Page p)@ctions b
g -
= v v
N Stack data, even Henndat Statically init.
of caller(s) [cafidlaid ' “constants” %

I |

' }
I Masmtype based cH Critical host functions: ;
o

v X
1 f
| Redirect indirect calls b‘* s¥al(y ekecQ, thoitel,

3. Malicious
Action

End-to-End Case Study: XSS in the Browser

Including vulnerable code may lead to XSS

Example: image manipulation website that depends on vulnerable version of libpng

- Specific version of libpng suffers from a buffer overflow

void main() {
std::string img_tag = "<img src=’data:image/png;base64,";
pnm2png("input.pnm”, "output.png”); // CVE-2018-14550 <a~ Overwrites the img_tag buffer
img_tag += file_to_base64("output.png”) + "’>";
emcc: :global ("document”).call("write”, img_tag);

S O AW N =

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

End-to-End Case Study: Arbitrary File Write in VM

Some attacks impossible on native code become possible in WebAssembly

Example: writing to a file

0O N O O A W N =

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

// Write "constant” string into "constant” file

FILE xf = fopen("file.txt", "a");
fprintf(f, "Append constant text.");
fclose(f);

// Somewhere else in the binary:
char buf[32];
scanf("%[*\n]", buf); // Stack-based

< (data (i32.const 65536) "%[*\0a]\00
file.txt\00a\00

Append constant text.\@@...

Read-only in native code
buffer overflow Can be overwritten in WASM

II)

Tools for WebAssembly

There is a lot of ongoing research towards tool support for WebAssembly in order to

\

\

\

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly tera Arteaga

Analyze binaries

CROW: Code Diversification for WebAssembly

Binaries

Quentin Stiévenart
Vrije Universiteit Brussel
Brussels, Belgium
quentin stievenart@vub.be

David W. Binkley
Loyola University Maryland
Baltimore, MD, USA
binkley@cs.loyola.edu

Coen De Roover
Vrije Universiteit Brus
Brussels, Belgium

coen.de.roover@vubl

Fuzzm: Finding Memory Bugs through

mail@dlehmann.eu

Abstract

7:‘ch/\ssemh|y binaries are often compiled from memory-
ek unsafe languages, such as C and C++. Because of Web-

"t Assembly's linear memory and missing protection features,
" g.. stack canaries, source-level memory vulnerabilities are
exploitable in compiled WebAssembly binaries, sometimes
even more easily than in native code. This paper addresses
! the problem of detecting such vulnerabilites through the frst

pm

itati

torpecs.au.dk

Binary-Only Instr ion and F g of WebA bl
Daniel Lehmann® Martin Toldam Torp* Michael Pradel
University of Stuttgart, Aarhus University, University of Stuttgart,
Germany Denmark Germany

michael@binaervarianz.de

Recent work [30] has shown that, surprisingly, memory vul-
nerabilities in WebAssembly binaries can sometimes be even
more easily exploited than when the same source code is
compiled to native architectures. One reason is the lack of
mitigations. such as stack canaries, page protection flags, or
hardened memory allocators [30].

vhox fuzzing has proven to be an
,47,59]. For example, Google's

Increase their security
Perform automated testing

ute of Technology
1@kth.se

Orestis Floros
KTH Royal Institute of Technology
forestis @kth.se

Oscar Vera Perez

Compositional Information Flow Analysis for
WebAssembly Programs

Quentin Stiévenart, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
{quentin.stievenart, coen.de.roover}@vub.be

stract—WebAssembly is a new W3C standard, pro a
\ble target for compilation for various languages. All major
sers can run WebAssembly programs, and its use extends
nd the web: there s interest in compiling cross-platform
fop applications, server applications, ToT and embedded
cations to WebAssembly because of the performance and
ity guarantees it aims to provide. Indeed, WebAssembly
been carefully designed with security in mind. In par-
i, WebAssembly applications are sandboxed from their

t. However, recent works have brought to light

s, Visitors of websites using WebAssembly have been
sed to malicious code as a result.

this paper, we propose an automated static program analysis
Idress these security concerns.

top 1 million Alexa websites rely on WebAssembly. Howe
the same study revealed an alarming finding: in 2019,
most common application of WebAssembly is to perf
cryplojacking, i.c.. relying on the visitor’s computing resou
to mine cryptocurrencies without authorisation. Moreq
despite being designed with security in mind, WebAssen
applications are still vulnerable to several traditional sect
attacks, on multiple execution platforms [37].
Consequently, there needs to be proper tool support
preventing and identifying malicious usage of WebAssem
There has been some early work on improving the sa
and security of WebAssembly, e.g., through improved men
safety [22]. code protection mechanisms [59], and sandt
R mAm mede et semeke mboos fio Lo B

Univ Rennes, Inria, CNRS, IRISA
oscar.vera-perez@inria.fr

Wasmati: An efficient static vulnerability scanner for WebAssembly

Tiago Brito*, Pedro Lopes, Nuno Santos, José Fragoso Santos -

INESC-ID / IST, Universidade de Lisboa, Portugal

ART

ICLE INFO

ABSTRACT

Revised

Article history:
Received 5 January 2022

28 March 2022

Accepted 24 April 2022
Available online 26 April 2022

WAFL: Binary-Only WebAssembly Fuzzing with Fast Snapshots

ABSTRACT

‘WebAssembly, the open standard for binary code, is quickly gaining
adoption on the web and beyond. As the binaries are often written
in low-level languages, like C and C++, they are riddled with the
same bugs as their traditional counterparts. Minimal tooling to
uncover these bugs on WebAssembly binaries exists. In this paper
we present WAFL, a fuzzer for WebAssembly binaries. WAFL adds
bly runtime to g

coverage data for the popular AFL++ fuzzer. Thanks to the underly-

a set of patches

Keno Hafller
keno.hassler@campus.tu-berlin.de
Technische Universitit Berlin
Berlin, Germany

WebAssembly is a new binary instruction format that allows targeted compiled code writt
languages to be executed with near-native speed by the browser’s JavaScript engine. How
WebAssembly binaries can be compiled from unsafe languages like C/C++, classical cod:
such as buffer overflows or format strings can be transferred over from the original progra

Dominik Maier
dmaier@sect.tu-berlin.de
Technische Universitat Berlin
Berlin, Germany

and Blazor [13] even side-step JavaScript for web development com-

pletely. Developers can write web i in languages like

Rust and C# directly, the frameworks then target WebAssembly to
execute the respective language.

Taking the idea of portability one step further, the open WASI
standard [4] allows standalone WebAssembly programs that even
run outside the browser. The goal is to create a truly universal binary

to the WAVM Wel:

platform. The infrastructure around WASI is still young but starting
to grow, for example, through the WebA:

embly Package Man-
O PRI R S S

Simplicity of WebAssembly: Size of the Specification

WebAssembly core is a small, well-defined standard

Semantics defined formally, along with a reference implementation

local.get « 1500
1. Let F be the current frame.
2. Assert: due to validation, F.locals[z] exists.
3. Let val be the value F.locals[z].
1000

4. Push the value val to the stack.

F;(local.getx) — F;uval (if F.locals[z] = val)

let rec step (c_.c
let {frame; c¢
let e = List.
tec ve', oo SRS Feasible to support the entirety of the standard

| Plain e',

(match e', vs with
o HTML 5 Css 2.1 ECMAScript 2015 WebAssembly 1.0
| LocalGet x, vs -> . . .

I (local frame x) :: vs, [] Specification size (number of pages)

Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

Local jumps (if, br, ...)
Direct function calls
Function returns

W N

Indirect function calls

Design of WebAssembly: Structured Control Flow

WebAssembly has no instruction for arbitrary jumps

Local control-flow instructions:
] block
- Scopes: block, Loop, 1f 132 const 1

- Jumps: br,br_if,br_table

Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

Local jumps (if, br, ...)
2. Direct function calls
Function returns

b

4. Indirect function calls

Design of WebAssembly: Direct Function Calls

(module
(type (func (param i32 i32) (result i32)))
(func (type 0) (param i32 i32) (result i32)

local.get ©
local.get 1
i32.add)
(func (type 0) (param i32 i32) (result i32)

i32.const 1
Implicitly manages the call

132.const 2 stack. The program has no way
call 9)) of accessing it through other
mearns.

Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

1

Local jumps (if, br, ...)

Direct function calls
In x86, the return address is

Function returns stored on the stack, and can be

4. Indirect function calls overwritten by an attacker in a
vulnerable program

Design of WebAssembly: Indirect Function Calls

(func (type 0) (param i32) (result i32)

local.get ©
i32.1load
call_indirect (type 0)) Call target must have the right type

(type 0) (param i32) (result i32) ...)
(type 0) (param i32) (result i32) ...)
(type 1) (param i32 i32) (result i32)
4 4 funcref)

(132.const 1) 1 2 3) Possible targets of indir.ect calls, but can
be mutated by host environment

Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

1

Local jumps (if, br, ...)
Direct function calls
Function returns

%4~ Indirect function calls

Less branching points in static analysis

Design of WebAssembly: Memory Model

WebAssembly programs have a single “linear memory”, isolated from the rest

Pointer arithmetic etc. are still doable, but potential damages are lessened

Linear memory is initialized to 0

(func (type 9)
(param i32) (result i32)
global.get ©
local.get ©

132 .store
global.get ©
i32.1load

Pointer analysis remains a challenge

WebAssembly in Practice: WASI

For stand-alone applications, it is necessary to interface with the operating system

WASI is currently experimental E—
int main() { libpreopen WAS! libo
printf("Hello, world!\n"); [svs‘emcau wrappers

Need to analyze the runtime

or @ or Web Polyfill

WebAssembly in Practice: Interfacing with JavaScript

WebAssembly object provides way of interacting with WebAssembly

WebAssembly. ((), importObject). (obj => {
obj.instance.exports. OF

var 132 = new (obj.instance.exports.memory.buffer);

var table = obj.instance.exports.table;
console. (table. (0)());

IOF

WebAssembly in Practice: Interfacing with JavaScript

(module

(func (param i32 i32) (result i32)))
(func (param 132 i32 i32) (result i32)))
(func (param i32 i32)))

"./module.js" "add" (func (type 0)))
(type 0) (param 182 i32) (result i32)

1i32.const 1

132 .consi”??

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly
Binaries

Quentin Stiévenart
Vrije Universiteit Brussel
Brussels, Belgium
quentin stievenart@vub.be

ABSTRACT

The recently ntroduced Webssernbly :lan«L\rd aims tobea portable
compilation target, enabling the cross-platform distribution of pro-
‘grams written in a variety of lAnguAges We propose an approach
to slice WebAssembly programs in order to enable applications
in reverse engineering, code comprehension, and security among

others. Given a program and a location in that program, program
slicing produces a minimal version of the program that preserves
the behavior at the given location. Specifically, our approach is
a static, intra-procedural, backward slicing approach that takes
into account WebAssembly-specific dependences to identify the
instructions of the lie. To do 5o it must cortetly overcome the
‘performing dey sisat the bi-
nary level. Furthermore, for the slice to be executable, the approach
needs to ensure that the stack behavior of its output complies witl
s validation requi We and eval-
uated our approach on a suite of 8386 real-world WebAssembly
binaries, finding that the average size of the 495 204 868 slices com-
puted is 537% of the original code, an improvement over the 60%
attained by related work slicing ARM binaries. To gain a more qual-
itative understanding of the slices produced by our approach, we

David W. Binkley
Loyola University Maryland
Baltimore, MD, USA
binkley@cs loyola.edu

Coen De Roover
Vrije Universiteit Brussel
Brussels, Belgium
coen.de.roover@vub.be

WebAssembly [25] “is a binary instruction format for a stack-
based virtual machine® [65] designed as a compilation target for
high-level languages. The specification of its core has been a W3C
standard since December 2019 [49]. WebAssembly was designed for
the purpose of embedding binarics in web applications in a portable
manner, thereby enabling intensive computations on the web. A
2021 empirical study by Hilbig et al. [30] found use cases on the
web as diverse as game engines, natural language processing, and
media players. Thanks to its ability to incorporate runtime functions
exported by the host environment, WebAssembly has also found
usage beyond web applications, broadening the value of analyses for
WebAssembly. Examples include desktop applications [63], smart
contracts [19], 10T back ends (27], and embedded software [52).

Program slicing (12, 66] is a program decomposition technique
that, based on a specific program point called the slicing crite-
rion, identifies a subprogram of the code relevant to the slicing
criterion. Program slicing has numerous applications, in debug-
ging [32, 37, 67], program comprehension [11, 16, 31, 36, 59], soft-
ware maintenance [23, 26), re-enginecring [14], refactoring [20],
testing [4, 28, 29], reverse engineering [2, 3], tierless or mul
programming [45, 46, and vulnerabiliy detection [50]

A

https://github.com/acieroid/wassail

Wassail: WebAssembly Static Analysis and Inspection Library

Compositional Information Flow Analysis for
WebAssembly Programs

Quentin Stiévenart, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium

{quentin.stievenart, coen.de.roover}

Absiuct—WebAsseubly 1 o ney W3C standand, providing
portable target for compilation for var guages. All major
browsers can run WebAssembly progrnms. and Its use cxtonds
beyond the web: there is interest in compiling cross-platform
desktop applications, server applications, IoT and embedded
applications to WebAssembly because of the performance and
i ims to provide. Indeed, WebAssembly
has been_ carefully designed with security in mind. In par-
lar, WebAssembly applications are sandboxed from their
host environment. However, recent works have brought to light
sc\cral lstatlons that expose Web Assembiy tafraditionl ftacle
tor: f websites using WebAssembly have been
xpoved o ot code oy 3 ret
per, we propose an automated static program analysis
to address these security concerns. Our analysis is focused on
fow and is For ever
function, it first computes a summary that describes in a sound
manner where the mfonnalmn [rom its parameters and the
global program state can flow to. These summaries can then
Yo spplice diring the sibsequerit anaiyils of Tunction, calls

vub.be

top 1 million Alexa websites rely on WebAssembly. However,
the same study revealed an alarming finding: in 2019, the
most common application of WebAssembly is to perform
eryptojacking, i.c.., relying on the visitor’s computing resources
to mine cryptocurrencies without authorisation. Moreover,
despite being designed with security in mind, WebAssembly
applications are still vulnerable to several traditional security
attacks, on multiple execution platforms [37].

Consequently, there needs to be proper tool support for
preventing and identifying malicious usage of WebAssembly.
There has been some early work on improving the safety
and security of WebAssembly, e.g.. through improved memory
safety [22]. code protection mechanisms [59], and sandbox-
ing [28]. Also, dynamic analyses have been proposed for
detecting cryptojacking [16], [67] or for performing taint
tracking [25], [60]. However, not a single static analysis for
Whibkacaaiihs b hevn nasoased oo i

