
Chunli Yu

chunli.yu@queensu.ca

Ying (Jenny) Zou

ying.zou@queensu.ca

Haoxiang Zhang

haoxianghz@gmail.com

An empirical study on the characteristics 
of reusable code clones

Consortium for Software Engineering Research (CSER) 2023 Spring Meeting, June 7, 2023



Inappropriate code cloning presents both financial 
and reputation loss for the organization

2

memcpy(bp, pl, payload);

• At least 3,156 projects have similar copies of Heartbleed buggy code.



Code clones are identical or similar code fragments

3

• Code clones are created by copy-and-paste activities.

Often 20% - 30% redundancy



4

Developers face a large 
amount of code clones 
to manage. 

Code cloning makes software maintenance difficult

• Most developers are contributing voluntarily
• Focus is towards fixing the issues
• Clone detection tools produce a large amount of clones
• It is not possible to check all clones



Limitation of existing approaches to improve clone 
quality

5

• Several prior studies attempt to identify 
problematic clones for refactoring.

• The prior studies provide reuse suggestions 
mainly based on clone prevalence and/or API-
usage related to clones.

• However, reusing code clones reliably from 
the quality perspective remains unstudied. 



Reusing code clones to improve code quality

6

To assist development and maintenance team in 
enhancing code quality, we aim to pinpoint high-quality 
code clones for reliable reuse.



➢ Difficult to manually examine clones to create a labeled 
dataset.

➢ The manually labelled results could be subjective and 
unreliable.

7

Research Challenges



Applying classification models to identify reusable 
code clones

8

➢ Automatically classify the clones for more reliable reuse 
considering both functional requirements and non-functional 
requirements

➢ Prioritize reusable clones for immediate attentions in quality 
improvement



Criteria for selecting reusable clones

Prevalence of
code clones

Lifecycle of
code clones

Fault Resilience
9



Clones that survive for a longer time period imply higher 
reusability. 

Commit History

Commit 
1

Commit 
2

Commit 
3

Commit 
n

10

Clone longevity



• Refers to the frequency of reusing code fragments. 
• Assesses functionality usefulness. 
• Calculated by the number of clone siblings.

11

Clone prevalence



• Reusing bug-prone clones can harm the quality of a project.

• Frequent buggy changes present signs of inferior code 
duplicates that are to be sifted out.

        Fault-resilience =
# 𝑁𝑜𝑛−𝑏𝑢𝑔𝑔𝑦 𝑐𝑜𝑚𝑚𝑖𝑡𝑠

# Buggy 𝑐𝑜𝑚𝑚𝑖𝑡𝑠

12

Clone fault-resilience



Data collection approach

13

Source code 
repository (Git)

Extract commit 
history

Detect 
clones

Clone 
groups 

Identify clone 
genealogies

Extract 
metrics Features

Create labeled 
dataset

Labeled 
dataset

Classify clones to 
identify reusable 

code clones (RQ1)  

Classified 
clones

Understand the 
characteristics of 

reusable code 
clones (RQ2)

Analyze reusable 
functionality 

(RQ3) 



➢ Github Java projects
➢ Commits > 1,000
➢ Issues > 1,000
➢ Pull requests > 1,000
➢ Source lines of code (SLOC) > 100,000

14

In total, we have 27 subject systems

Criteria for selecting subject systems



15

➢ NiCad clone detector is leveraged to detect Type I, Type II, Type 
III code clones on method level.

Detecting code clones

Source code 
repository 

(Git)

Extract commit 
history

Detect clones 
with NiCad

Code clones at 
each commit

Source code 
in each 
commit

Build clone 
genealogy

Clone 
genealogy



16

Product Metrics Process MetricsClone Metrics

# contributors

# clone instances
# of followers
# length of    
common paths

LOC

Complexity

# Fanin
# Fanout … …

Calculating clone metrics



17

Lifecycle Prevalence
Fault 

Resilience

Longevous

Meteoric

Prosperous

Rare

Metamorphosed

Vicissitudinous

Constructing training data set



18

➢ Tree-based classifiers are leveraged in our case study.
▪      Decision Tree
▪      Random Forest
▪      XGBoost
▪      CatBoost
▪      LightGBM
▪      AdaBoost

➢ 10 * 10 cross validation is used to fine-tune our models.

Building classification models



Research questions (RQ)

19

How well can we classify the reusable code clones? 

RQ1



20

Product 
Metrics

Process 
Metrics

Clone 
Metrics

Train

RQ1.How well can we classify the reusable code 
clones



RQ1.The AUC achieved by ML classifiers in 
classifying the reusable code clones

21



RQ1.The AUC achieved by ML classifiers in 
classifying the reusable code clones

22

Our Random Forest classifier achieves the best AUC (i.e., 
0.79) in determining reusable code clones.



RQ2. Features that have the most explanatory power 
in distinguishing reusable/non-reusable clones 

23

The features number of followers, number of contributors, and 
length of common paths provide the most explanatory power.



RQ3. The functionalities of reusable code clones 

24



RQ3. The functionalities of reusable code clones 

25

11 functionality categories derived from the clone groups 
reveal the intention of the code, the top three categories 
are: search, event-handling, and convert.



26

chunli.yu@queensu.ca


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Criteria for selecting reusable clones
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

