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Inappropriate code cloning presents both financial
and reputation loss for the organization
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* Atleast 3,156 projects have similar copies of Heartbleed buggy code.




Code clones are identical or similar code fragments

Original source

4: void sumProd(int n) {

5: float sum = 0.0;

6: float prod =1.0;

7:  for (inti=1;i<=n;it++) {
8: sum = sum + i;

9: prod = prod * i;

1
1
1

0: foo(sum, prod);
1: }
2:}

Clone Type 1

void sumProd(int n) {

float sum = 0.0; /C1

float prod =1.0; // C2

for (inti=1;i<=mn;i++) {
sum = sum + i;
prod = prod * i;
foo(sum, prod);

—
}

spaces and comments
are added.

Clone Type 2

void sumProd(int n) {

ints=0;//C1
intp=1;//C2

for (inti=1;i<=n;i++) {
s=s+i;
p=p*i

foo(s, p);

spaces and comments
are added.

variable

types are changed

names and

Clone Type 3

void sumProd(int n) {
ints=0; //C1
intp=1;//C2
for (inti=1;i<=n;itt) {
s=s+i*i
foo(s, p);

spaces and comments

are added.

variable names
types are changed
statements are deleted,
modified

N

and

Code clones are created by copy-and-paste activities.

[Often 20% - 30% redundancy]




Code cloning makes software maintenance difficult

Developers face a large &
—_— amount of code clones [ e
; to manage.

BPDAIE

e

* Most developers are contributing voluntarily

* Focus is towards fixing the issues

* Clone detection tools produce a large amount of clones
* |tis not possible to check all clones



Limitation of existing approaches to improve clone
quality

D@ e Several prior studies attempt to identify
problematic clones for refactoring.

PREVENTION
1S BETTER

[@  The prior studies provide reuse suggestions
mainly based on clone prevalence and/or API-

usage related to clones.

D\TJ * However, reusing code clones reliably from
the quality perspective remains unstudied.



Reusing code clones to improve code quality
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0 assist development and maintenance team in
enhancing code quality, we aim to pinpoint high-quality
code clones for reliable reuse
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Research Challenges

» Difficult to manually examine clones to create a labeled
dataset.

» The manually labelled results could be subjective and
unreliable.



Applying classification models to identify reusable
code clones

» Automatically classify the clones for more reliable reuse

considering both functional requirements and non-functional
requirements

» Prioritize reusable clones for immediate attentions in quality
Improvement



Criteria for selecting reusable clones

:) Lifecycle of

@@( C) code clones

Prevalence of
code clones

Fault Resilience



Clone longevity

Clones that survive for a longer time period imply higher
reusability.

Commit Commit Commit 000 Commit

1] 2| 3| n |

>

Commit History
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Clone prevalence

e Refers to the frequency of reusing code fragments.
e Assesses functionality usefulness.
* Calculated by the number of clone siblings.
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Clone fault-resilience

* Reusing bug-prone clones can harm the quality of a project.

* Frequent buggy changes present signs of inferior code
duplicates that are to be sifted out.

# Non—buggy commits
# Buggy commits m
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Criteria for selecting subject systems

» Github Java projects

» Commits > 1,000

> Issues > 1,000

» Pull requests > 1,000

» Source lines of code (SLOC) > 100,000

[ In total, we have 27 subject systems ]
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Il code clones on method level.
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» NiCad clone detector is leveraged to detect Type |, Type Il, Type
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Calculating clone metrics

=8 /> )

Clone Metrics Product Metrics Process Metrics




Longevous #

Meteoric ®

Constructing training data set

Prevalence

Rare @ Vicissitudinous ¢
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Building classification models

» Tree-based classifiers are leveraged in our case study.
- Decision Tree

Random Forest

XGBoost

CatBoost

LightGBM

AdaBoost

> 10 * 10 cross validation is used to fine-tune our models.
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Research questions (RQ)

~ Ral

How well can we classify the reusable code clones?
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RQ1.How well can we classify the reusable code

clones
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RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones
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RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones

1.1

1.0
0.9 /\
- 0.77.
0.76 0.74

Our Random Forest classifier achieves the best AUC (i.e.,
0.79) in determining reusable code clones. 22




RQ2. Features that have the most explanatory power
in distinguishing reusable/non-reusable clones

cnt_group_followers | — | ¢
cnt_distinct_contributors H Il — ¢ ¢
len_common_path | I—-—I
CountOutput - |—.—| ¢ ¢
CountLine { ¢ I—-—I ¢
Countinput - | - | ¢ ¢
cnt_group_paras - I—-I
CountLineComment - ¢ I—.—I ¢
Knots - |—|I|—| ¢
CountPath I—I:I—I ¢
Essential - QID
010 011 012 013

The features number of followers, number of contributors, and
length of common paths provide the most explanatory power. Jza
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RQ3. The functionalities of reusable code clones
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20

event handling

read/write

check/verify/determine

add/remove object from collection

convert

search

config

Math

cleanup

visit

encode/decode

type

tp
tn
fp
fn

Function Category

Category Description

Search

Config
Check/Determine
Add/Remove from collection
Handle events
Convert
Read/Write

Math
Encode/Decode
Visit

Cleanup

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

24
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RQ3. The functionalities of reusable code clones
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Function Category

Category Description

‘ Search

Conhg
Check/Determine

Add/Remove from collection
Handle events

Convert
Read/Write
Math
Encode/Decode
Visit

type Cleanup

% %

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

tp
tn
fp
fn

\are: search, event-handling, and convert.

11 functionality categories derived from the clone groups
reveal the intention of the code, the top three categories
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Reusing code clones to improve code quality
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RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones

0
:«; 0.79
&

RQ2. Features that have the most expl

in distinguishing reusable/non-reus chunli.yu@queensu.ca

ur Random Forest classifier achieves the best AUC (i.e.,
) in determining reusable code clones.

lalities of reusable code clones

Function Category

Category Description
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The features number of followers, number of contributors, and
length of common paths provide the most explanatory power.

e [Searn

onfig
Check/Determine
Add/Remove from collection

A [Handle events
‘ onvert

cad/Write
Math
Encode/Decode
Visit
Cleanup

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

n
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are: search, event-handling, and convert.

11 functionality categories derived from the clone groups
reveal the intention of the code, the top three categories J
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