An empirical study on the characteristics
of reusable code clones

Chunli Yu Haoxiang Zhang Ying (Jeny) Zou
chunli.yu@queensu.ca haoxianghz@gmail.com ying.zou@queensu.ca
(-
2 ry
% &

L, o2
Olution & M

Consortium for Software Engineering Research (CSER) 2023 Spring Meeting, June 7, 2023

Inappropriate code cloning presents both financial
and reputation loss for the organization

@ Heartbeat - Normal usage

Server, send me
this 4 letter word

Server

bird
. tumblr. .@YAHOOL

INTUIT Google
zt} Dropbox

f

Client

" ir "

W Heartbeat - Malicious usage

Server, send me |
this 500 letter
word if you are
Client there: "bird" 31431498531054.

User Carol wants
to change
password to
"password 123"...

memcpy(bp, pl, payload);

Server

bird. Server '
master key is ’

X17413

* Atleast 3,156 projects have similar copies of Heartbleed buggy code.

Code clones are identical or similar code fragments

Original source

4: void sumProd(int n) {

5: float sum = 0.0;

6: float prod =1.0;

7: for (inti=1;i<=n;it++) {
8: sum = sum + i;

9: prod = prod * i;

1
1
1

0: foo(sum, prod);
1: }
2:}

Clone Type 1

void sumProd(int n) {

float sum = 0.0; /C1

float prod =1.0; // C2

for (inti=1;i<=mn;i++) {
sum = sum + i;
prod = prod * i;
foo(sum, prod);

—
}

spaces and comments
are added.

Clone Type 2

void sumProd(int n) {

ints=0;//C1
intp=1;//C2

for (inti=1;i<=n;i++) {
s=s+i;
p=p*i

foo(s, p);

spaces and comments
are added.

variable

types are changed

names and

Clone Type 3

void sumProd(int n) {
ints=0; //C1
intp=1;//C2
for (inti=1;i<=n;itt) {
s=s+i*i
foo(s, p);

spaces and comments

are added.

variable names
types are changed
statements are deleted,
modified

N

and

Code clones are created by copy-and-paste activities.

[Often 20% - 30% redundancy]

Code cloning makes software maintenance difficult

Developers face a large &
—_— amount of code clones [e
; to manage.

BPDAIE

e

* Most developers are contributing voluntarily

* Focus is towards fixing the issues

* Clone detection tools produce a large amount of clones
* |tis not possible to check all clones

Limitation of existing approaches to improve clone
quality

D@ e Several prior studies attempt to identify
problematic clones for refactoring.

PREVENTION
1S BETTER

[@ The prior studies provide reuse suggestions
mainly based on clone prevalence and/or API-

usage related to clones.

D\TJ * However, reusing code clones reliably from
the quality perspective remains unstudied.

Reusing code clones to improve code quality

@@.‘m

component
extraction

central
nowledge foundation

program
—.-—_ = anaIyS|s r—— i
' automatic |mprovement

distributed development teams

-

0 assist development and maintenance team in
enhancing code quality, we aim to pinpoint high-quality
code clones for reliable reuse

- ' o

Research Challenges

» Difficult to manually examine clones to create a labeled
dataset.

» The manually labelled results could be subjective and
unreliable.

Applying classification models to identify reusable
code clones

» Automatically classify the clones for more reliable reuse

considering both functional requirements and non-functional
requirements

» Prioritize reusable clones for immediate attentions in quality
Improvement

Criteria for selecting reusable clones

:) Lifecycle of

@@(C) code clones

Prevalence of
code clones

Fault Resilience

Clone longevity

Clones that survive for a longer time period imply higher
reusability.

Commit Commit Commit 000 Commit

1] 2| 3| n |

>

Commit History

10

Clone prevalence

e Refers to the frequency of reusing code fragments.
e Assesses functionality usefulness.
* Calculated by the number of clone siblings.

11

Clone fault-resilience

* Reusing bug-prone clones can harm the quality of a project.

* Frequent buggy changes present signs of inferior code
duplicates that are to be sifted out.

Non—buggy commits
Buggy commits m

12

Fault-resilience =

Source code

repository (Git)

[

-

Analyze reusable
functionality

(RQ3)

~

Data collection approach

Extract commit

history I | clones

Detect

Clone
groups

4 Understand the)
characteristics of

J

A

reusable code

_clones (RQ2))

Classified
clones

genealogies

»[Identify clone]’[

Extract
metrics

-

.

Classify clones to
identify reusable

code clones (RQ1)
J

~

Labeled
dataset

I "| Features JJ

[

Create labeled
dataset

J

13

Criteria for selecting subject systems

» Github Java projects

» Commits > 1,000

> Issues > 1,000

» Pull requests > 1,000

» Source lines of code (SLOC) > 100,000

[In total, we have 27 subject systems]

14

Il code clones on method level.

AN
S

Source code
repository

Extract commit
history

}4

(Git)

— N
—~

Source code
in each
commit

Clone
genealogy

\/—

Detecting code clones

Detect clones
with NiCad

N

Build clone Code clones at
genealogy each commit

A 4

.

» NiCad clone detector is leveraged to detect Type |, Type Il, Type

15

Calculating clone metrics

=8 />)

Clone Metrics Product Metrics Process Metrics

Longevous #

Meteoric ®

Constructing training data set

Prevalence

Rare @ Vicissitudinous ¢

17

Building classification models

» Tree-based classifiers are leveraged in our case study.
- Decision Tree

Random Forest

XGBoost

CatBoost

LightGBM

AdaBoost

> 10 * 10 cross validation is used to fine-tune our models.

18

Research questions (RQ)

~ Ral

How well can we classify the reusable code clones?

19

RQ1.How well can we classify the reusable code

clones

Clone Product Process
Metrics Metrics Metrics

!j\
Train
=" [l

|
Reusable ovnet

20

RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones

1.1
1.0

0.9

0.6

0.5

0.4

SR T
—>-
—alE—
—4lli—
I

DecisionTree
RandomForest
XGB

LGBM
CatBoost
AdaBoost

RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones

1.1

1.0
0.9 /\
- 0.77.
0.76 0.74

Our Random Forest classifier achieves the best AUC (i.e.,
0.79) in determining reusable code clones. 22

RQ2. Features that have the most explanatory power
in distinguishing reusable/non-reusable clones

cnt_group_followers | — | ¢
cnt_distinct_contributors H Il — ¢ ¢
len_common_path | I—-—I
CountOutput - |—.—| ¢ ¢
CountLine { ¢ I—-—I ¢
Countinput - | - | ¢ ¢
cnt_group_paras - I—-I
CountLineComment - ¢ I—.—I ¢
Knots - |—|I|—| ¢
CountPath I—I:I—I ¢
Essential - QID
010 011 012 013

The features number of followers, number of contributors, and
length of common paths provide the most explanatory power. Jza

Count

RQ3. The functionalities of reusable code clones

200

150

100

20

event handling

read/write

check/verify/determine

add/remove object from collection

convert

search

config

Math

cleanup

visit

encode/decode

type

tp
tn
fp
fn

Function Category

Category Description

Search

Config
Check/Determine
Add/Remove from collection
Handle events
Convert
Read/Write

Math
Encode/Decode
Visit

Cleanup

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

24

Count

RQ3. The functionalities of reusable code clones

200

150

100

50

Function Category

Category Description

‘ Search

Conhg
Check/Determine

Add/Remove from collection
Handle events

Convert
Read/Write
Math
Encode/Decode
Visit

type Cleanup

% %

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

tp
tn
fp
fn

\are: search, event-handling, and convert.

11 functionality categories derived from the clone groups
reveal the intention of the code, the top three categories

25

Reusing code clones to improve code quality

e,

component reuse
extraction
central
knowledge foundation
program wieds)

== analysis

%: ‘ = &
S‘ automatlmmprovementJ 83

distributed development teams

To assist development and maintenance team in

enhancing code quality, we aim to pinpoint high-quality 7

code clones for reliable reuse. %
[J

Y o“ﬁ
Olution & B

RQ1.The AUC achieved by ML classifiers in
classifying the reusable code clones

0
:«; 0.79
&

RQ2. Features that have the most expl

in distinguishing reusable/non-reus chunli.yu@queensu.ca

ur Random Forest classifier achieves the best AUC (i.e.,
) in determining reusable code clones.

lalities of reusable code clones

Function Category

Category Description

cnt_group_followers |—|_|_|—| + &
ent_distinct_contributors I—|]:l—| [
len_common_path _—i 150
CountOutput - I-.—| + + =
CountLine { # I—-—{ + 5
Countinput - I—-—{ (X "
cnt_group_paras - I—-l
CountLineComment + I—.—| + 5
Knots -)—m—! +
CountPath 1 I—D—i ¢+ 0
Essential *
0.0 0.1 02 0.3

The features number of followers, number of contributors, and
length of common paths provide the most explanatory power.

e [Searn

onfig
Check/Determine
Add/Remove from collection

A [Handle events
‘ onvert

cad/Write
Math
Encode/Decode
Visit
Cleanup

Retrieve related information to the given object
Prepare and initialize working environment
Check specific status
Append/add/insert/remove/delete/exclude
Listen to an event and take handling actions
Convert an object from one type to another
Read/write from/to db, file, stream, buffer
Process calculations

Encode or decode an object

Traverse a collection

Cleanup working environment

n
p
fn

are: search, event-handling, and convert.

11 functionality categories derived from the clone groups
reveal the intention of the code, the top three categories J

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Criteria for selecting reusable clones
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

