
Assessment of Software Vulnerability
Contributing Factors
using XAI (eXplainable AI) Techniques

Contributor: Ding Li, Prof. Yan Liu

Presenter : Ding Li

1

Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada

Presentation Overview
• Introduction
• Background of software vulnerability detection

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment (This talk focus in Graph-based)

• Experiment results (Graph-based factors assessing).

• Conclusion, Contribution, Reference, Discussion.
2

3

Background – software vulnerability detection

How to detect software vulnerabilities?

Manual Detection Static & Dynamic
Analysis Tools

Machine Learning
Detection

Pros:
• In-depth understanding of the

system's functionality
Cons:
• Time-consuming.
• Non scalable

Pros:
• Automated and scalable
Cons:
• High false positives
• Limited by rule sets

Pros:
• Automated and scalable
• Continue learning from data
• Reduces false positives
Cons:
• Computationally expensive
• Transparent concerns

Software vulnerability:
- Flaws or weaknesses in a software program.
- can be exploited to perform unauthorized actions, such as breaching data or disrupting services[1].

Information summarized from [3]

4

Background – software vulnerability detection

Figure 1. A code snippet example of vulnerability type
(Memory Allocation with Excessive Size Value)

What factors, and how the features affect the
machine learning based detection decision?

• Semantic Tokens:
- HashMap intHashMap, =
- new, LinkedHashMap, data, ()

• Syntax Meanings:
- LinkedHashMap call data
- new init LinkedHashMap(data)
- Hashmap decl LinkedHashMap(data)
- LinkedHashMap(data) expr initHashMap

-> Memory Allocation with Excessive Size Value

Factors that manual detection rely on:

Give a vulnerable code snippet, what are the contributing
factors, and how to measure their features impact on the
prediction results of machine learning based detection
approach?

Code Token

Token attention value

Syntactic constructs

…… ML model

factors

Presentation Overview
• Introduction

• Background of code vulnerability

• XAI Feature importance explanation

• Related work

• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Graph-based factors assessing results.

• Conclusion, Contribution, Reference, Discussion.
5

6

Background - XAI Feature Importance Explanation

Figure2 : XAI (EXplainable AI) feature importance explanation gives the quantified results of feature’s impact on model’s predictions.

Syntactic constructs

ML model

Feature
Type

name

expression

declaration

…

Features

Vulnerability type

Name (1.0)

Expression (0.78)

Declaration (0.64)

XAI Feature Importance Explanation

…

(Value: Feature contribution value)

XAI (eXplainable AI) feature importance explanation, as a branch of XAI method,
helps user to understand the model’s predictions and specific influence of individual features
contributing to these predictions[2].

Presentation Overview
• Introduction

• Background of code vulnerability

• XAI Feature importance explanation

• Related work

• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion, Contribution, Reference, Discussion.
7

8

Related work - Factors in Code Representation Techniques

Figure 3: The taxonomy of factors under various code feature representation techniques.
our contribution: extension to the feature factor graininess from work [4].

9

Related work
Text-based code vulnerability detection：
• primarily focus on refining processes and improving model for higher detection accuracy, transferring

knowledge from nature language process (Transformer models[5,6,7], CodeBERT[8], etc).
• Factors Explanation:

- Token type: Both code body and comments matters[9]; Transformer-based model also value separator
symbols (commas, etc.)[10].

- Token Frequency: Preserving token frequency improves model performance [11].
- Token Length: Limiting token length leads to information loss [12] (max 512 tokens in [12]).
- Token Attention value:

- In NLP task, attention values potentially indicate token importance[13], however caution is needed
for this conclusion[14].

- In code vulnerability task, attention value explanations stay at individual code snippets level[15,16]
by mapping attention value, lack of cross-validation with XAI methods for representing
importance.

10

Related work
Graph-based code vulnerability detection：
• Code Representation:

- Abstract Syntax Tree is majority of the exiting study [4], but combinations multiple graphs based on AST become
recently trend [3].

- State-of-the-art models Code2Vec(AST) [18], GraphCodeBert(DFG)[19], Devign (Combine)[20], GraphVecCode(AST)[21].

• Factors explanation:
- Code2Vec[18] and MIL[22]techniques provide explainability at the AST path level, suggesting the importance of paths

on individual code snippets.
- Refer to syntactic constructs, names, identifier, and parameter play a significant role in vulnerability tasks, as

highlighted by various studies[23,24,25].
- CWE(Common Weakness Enumeration) developed the weakness type and gather similar types into a tree structure.

Despite insights on certain crucial identifiers, a gap exists in the complete evaluation of all syntactic
constructs across different vulnerability types, suggesting the need for further exploration in this area.

11

Research Questions

RQ3. How do the CWE similarity summarized by syntactic constructs' importance explanations
align with expert-defined results?

RQ1. How do measure the code textual factors influence on the performance of transformer-
based models in code vulnerability detection tasks?

RQ2. How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s
prediction for different software vulnerability types?

Text-based

Graph-based

Graph-based

Three factors: Code Token Length, Code Token Type, Code Token Attention Value

Aim to identify and quantify the impact of syntactic constructs linked to code vulnerabilities

To evaluate the effectiveness of similarity results from XAI approach with expert-defined baseline.

(This talk
focus RQ2&3)

Presentation Overview
• Introduction
• Background of code vulnerability

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion, Contribution, Reference, Discussion.
12

13

Methodology Graph-based factors assessment –

 Syntactic constructs feature explanation (RQ2)

Figure 4. The overall framework of explainable syntactic constructs factors evaluation

Dataset: Juliet, OWASP, Draper benchmark projects.
GraphCodeVec[21]: novel sota model for creating a generalizable graph-based, task-agnostic code learning that leverages Graph Convolutional Networks (GCN)
XAI methods: SHAP[26], Mean-Centroid Preddiff[13].

To answer RQ2: How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s prediction for
different software vulnerability types?

Step1-data preprocessing Step2- model pre-training

Step3- syntactic constructs influence explanation

14

Methodology Graph-based factors assessment -CWE Similarity (RQ3)

Figure 5. The overall framework of XAI summarized CWE similarity validation
with baseline

CWE Similarity Baseline: https://cwe.mitre.org/data/definitions/1000.html

To answer RQ3: How do the CWE similarity summarized by syntactic constructs' importance explanations align with
expert-defined results?

Step1- Summarize CWE similarity from XAI explanation

Step2- Cross validation with baseline

- Given two CWEs’ feature importance
orders, CWE similarity value is 𝜌 :

Where Κ𝜏 Kendal tau ranking distance.

Step1- Summarize CWE similarity from XAI explanation

15

Figure 5. The overall framework of XAI summarized CWE similarity
validation with baseline

CWE Similarity Baseline: https://cwe.mitre.org/data/definitions/1000.html

To answer RQ3: How do the CWE similarity summarized by syntactic constructs' importance explanations align with
expert-defined results?

Step1- Summarize CWE similarity from XAI explanation

Step2- Cross validation with baseline

Step2- Cross validation with baseline

We define three metrics to compare
CWE similarity from our XAI approach and baseline.

- TopN Hit Rate: if CWE similarity pair in baseline is within
the TopN similar of XAI results:

- Avg Similarity score : calculates the average normalized
similarity score for all CWEs within a category in the
baseline table

Methodology Graph-based factors assessment -CWE Similarity (RQ3)

- Mean Reciprocal Rank : calculates the reciprocal of the rank
of the first correct answer, within the XAI ranking list.

Presentation Overview
• Introduction
• Background of code vulnerability

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion, Contribution, Reference, Discussion.
16

17

Experiment Results - Syntactic constructs feature explanation (RQ2)

Figure 6-1. Source Code: a code snippet of CWE789

Figure 6-2. AST structure code: extract AST information of the code
snippet, includes code token node, and the AST path.

Step 1-data preprocessing

Figure 6-3. Masking AST path with syntactic construct (left unmarked, right marked)

From Figure 4

18

Experiment Results - Syntactic constructs feature explanation (RQ2)
Step2&3- model pre-training, syntactic constructs influence explanation

From Figure 4

From step2, we observe GraphCodeVec + TextCNN perform consistent well.

Figure 7: syntactic constructs feature explanations results (Step 3) for all CWEs

Buffer Errors

Syntactic construct features and
their contribution value

19

Answering Research Questions
RQ2. How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s
prediction for different software vulnerability types?

Aim to identify and quantify the impact of syntactic constructs linked to code vulnerabilities

• The importance of syntactic constructs varies from CWE type, and the dataset.

• However, constructs such as statement, name, and parameters have a general high impact on
code vulnerability types.
ü Similar findings that names, identifier(statement), and parameter play a significant role in

vulnerability tasks, in studies[23,24,25]

• Several CWE type sharing high similarity based on feature importance order. (CWE 78,79, 89)
ü As a motivation of RQ3

20

Experiment Results - CWE Similarity (RQ3)

Step1- Summarize CWE similarity from XAI explanation

From Figure 5

Figure 8: CWE similarity distance value from syntactic construct
feature importance based on XAI approach

Ø CWE120 and CWE119 are
more similar.

Ø CWE469 & CWE 476 are less
similar with CWE 119&120.

21

Experiment Results - CWE Similarity (RQ3)

Step2: CWE similarity results cross validation with baseline

From Figure 5

Table1: CWE categorized by baseline similarities

Table2: CWE Similarity Evaluation Results

Ø Our CWE similarity summary from XAI effectively align with baseline
with 77.8% Top1 Hit rate.

22

Answering Research Questions
RQ3. How do the CWE similarity summarized by syntactic constructs' importance explanations
align with expert-defined results?

To evaluate the effectiveness of similarity results from XAI approach with expert-defined baseline.

• Our CWE similarity evaluation method efficiently identifies related CWEs, achieving a hit rate of
77.8% for the most similar CWE (Top-1) and 88.9% for the top five similar CWEs (Top-5).

• In our evaluation, only two instances - CWE22 and CWE36 (2 out of 20) did not meet the
baseline similarities.

Presentation Overview
• Introduction
• Background of code vulnerability

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion Contribution, Reference, Discussion.
23

24

Conclusion Contribution

ü We extend the taxonomy of code representation techniques by examining them at the

feature factor level.

ü Our study provides a comprehensive evaluation of the importance of all syntactic constructs,

complementing previous studies that focused only on top-valued constructs.

ü By leveraging rankings of syntactic constructs, we effectively analyze and validate CWE

similarity, comparing our results to expert-defined baselines to confirm the effectiveness of

our XAI explanation approach.

25

Reference & Discussion
1. N. I. of Standards and Technology. "Vulnerability Definition". Computer Security Resource Center.
Online at: csrc.nist.gov/glossary/term/vulnerability.
2. Huang, J., Wang, Z., Li, D., Liu, Y. (2022). "The Analysis and Development of an XAI Process on
Feature Contribution Explanation". In: IEEE International Conference on Big Data, Osaka, Japan. Pages 5039-
5048. DOI: 10.1109/BigData55660.2022.10020313.
3. Lin, G., Wen, S., Han, Q.-L., Zhang, J., Xiang, Y. (2020). "Software Vulnerability Detection Using
Deep Neural Networks: A Survey". In: Proceedings of the IEEE, Vol. 108, No. 10, Pages 1825–1848.
4. Hanif, Hazim, et al. "The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches." Journal of Network and Computer Applications 179 (2021):
103009.
5. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. (2017). "Enriching Word Vectors with Subword
Information". In: Transactions of the Association for Computational Linguistics, Vol. 5, Pages 135–146.
6. Svyatkovskiy, A., Zaytsev, V., Sundaresan, N. (2019). "Semantic Source Code Models Using
Identifier Embeddings". In: IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). Pages 554–565.
7. Loyola, P., Matzger, B., Schiele, G. (2019). "Import2vec Learning Embeddings for Software
Libraries". In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
Pages 1106–1108.
8. Feng, Zhangyin, et al. "Codebert: A pre-trained model for programming and natural
languages." arXiv preprint arXiv:2002.08155 (2020).
9. Feng, Z., et al. (2020). "CodeBERT: A Pre-trained Model for Programming and Natural
Languages". Online at: arXiv preprint arXiv:2002.08155.
10. Li, D., Liu, Y., Huang, J., Wang, Z. (2023). “A Trustworthy View on Explainable Artificial
Intelligence Method Evaluation”. In: Computer, Vol. 56, No. 4. Pages 50–60.
11. Sharma, R., Chen, F., Fard, F., Lo, D. (2022). “An Exploratory Study on Code Attention in BERT”.
In: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension. Pages 437–448.
12. Zheng, W., Gao, J., Wu, X., Xun, Y., Liu, G., Chen, X. (2020). “An Empirical Study of High-
Impact Factors for Machine Learning-based Vulnerability Detection”. In: 2020 IEEE 2nd International
Workshop on Intelligent Bug Fixing (IBF). Pages 26–34.
13. Yuan, X., Lin, G., Tai, Y., Zhang, J. (2022). “Deep Neural Embedding for Software Vulnerability
Discovery: Comparison and Optimization”. In: Security and Communication Networks, Vol. 2022. Pages 1–
12.

14. Vashishth, S., Upadhyay, S., Tomar, G. S., Faruqui, M. (2019). “Attention Interpretability across
NLP Tasks”. Online at: arXiv preprint arXiv:1909.11218.
15. Jain, S., Wallace, B. C. (2019). “Attention is Not Explanation”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Pages 3543–3556.
16. Mao, Y., Li, Y., Sun, J., Chen, Y. (2020). “Explainable Software Vulnerability Detection Based on
Attention-based Bidirectional Recurrent Neural Networks”. In: 2020 IEEE International Conference on Big
Data (Big Data). Pages 4651–4656.
17. Duan, X., Wu, J., Ji, S., Rui, Z., Luo, T., Yang, M., Wu, Y. (2019). “VulSniper: Focus Your
Attention to Shoot Fine-grained Vulnerabilities”. In: IJCAI. Pages 4665–4671.
18. Alon, U., et al. (2019). "Code2Vec: Learning Distributed Representations of Code". In: Proceedings
of the ACM on Programming Languages 3.POPL. Pages 1-29.
19. Guo, D., et al. (2020). "GraphCodeBERT: Pre-training Code Representations with Data Flow".
Online at: arXiv preprint arXiv:2009.08366.
20. Zhou, Y., et al. (2019). "Devign: Effective Vulnerability Identification by Learning Comprehensive
Program Semantics via Graph Neural Networks". In: Advances in Neural Information Processing Systems 32.
21. Ding, Z., et al. (2023). "Towards Learning Generalizable Code Embeddings using Task-agnostic
Graph Convolutional Networks". In: ACM Transactions on Software Engineering and Methodology 32.2.
Pages 1-43.
22. Hariharan, M., et al. (2022). "Proximal Instance Aggregator Networks for Explainable Security
Vulnerability Detection". In: Future Generation Computer Systems, Vol. 134. Pages 303-318.
23. Applis, L., Panichella, A., van Deursen, A. (2021). “Assessing Robustness of ML-based Program
Analysis Tools Using Metamorphic Program Transformations”. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Pages 1377–1381.
24. Rabin, M. R. I., Bui, N. D., Wang, K., Yu, Y., Jiang, L., Alipour, M. A. (2021). “On the
Generalizability of Neural Program Models with Respect to Semantic-Preserving Program Transformations”.
In: Information and Software Technology, Vol. 135. Article No. 106552.
25. Yang, Z., Shi, J., He, J., Lo, D. (2022). “Natural Attack for Pre-trained Models of Code”. In:
Proceedings of the 44th International Conference on Software Engineering. Pages 1482–1493.
26. Lundberg, S. M., Lee, S.-I. (2017). “A Unified Approach to Interpreting Model Predictions”. In:
Advances in Neural Information Processing Systems, Vol. 30.

26

Appendix 1 - Syntactic constructs feature explanation (RQ2)

Syntactic Constructs and Categories in the software

27

Appendix 2 - Syntactic constructs feature explanation (RQ2)

Step2&3- model pre-training, syntactic constructs influence explanation

From Figure 4

From step2, we observe GraphCodeVec + TextCNN perform consistent well (88.4%, 89.9% on
F1-Score for Juliet, Draper dataset) than GraphCodeVec + Random Forest or Transformer.
We preform XAI based on GraphCodeVec + TextCNN.

Figure 7: Feature explanations results (Step 3) for CWE from OWASP dataset.

Meta syntactic
construct features and
their feature importance
order

Related Feature
Contribution Value

