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Background – software vulnerability detection 

How to detect software vulnerabilities? 

Manual Detection Static & Dynamic 
Analysis Tools

Machine Learning
Detection

Pros:
• In-depth understanding of the 

system's functionality
Cons:
• Time-consuming. 
• Non scalable

Pros:
• Automated and scalable
Cons:
• High false positives 
• Limited by rule sets

Pros:
• Automated and scalable
• Continue learning from data
• Reduces false positives
Cons:
• Computationally expensive
• Transparent concerns

Software vulnerability:  
- Flaws or weaknesses in a software program.
- can be exploited to perform unauthorized actions, such as breaching data or disrupting services[1].

Information summarized from [3]
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Background – software vulnerability detection

Figure 1. A code snippet example of vulnerability type 
(Memory Allocation with Excessive Size Value)

What factors, and how the features affect the 
machine learning based detection decision? 

• Semantic Tokens: 
- HashMap intHashMap, =
- new, LinkedHashMap, data, ()

• Syntax Meanings:
- LinkedHashMap call data
- new init LinkedHashMap(data)
- Hashmap decl LinkedHashMap(data)
- LinkedHashMap(data) expr  initHashMap

-> Memory Allocation with Excessive Size Value

Factors that manual detection rely on: 

Give a vulnerable code snippet, what are the contributing
factors, and how to measure their features impact on the 
prediction results of machine learning based detection 
approach?

Code Token

Token attention value

Syntactic constructs

…… ML model

factors



Presentation Overview
• Introduction

• Background of code vulnerability 

• XAI Feature importance explanation

• Related work

• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Graph-based factors assessing results.

• Conclusion, Contribution, Reference, Discussion. 
5



6

Background - XAI Feature Importance Explanation

Figure2 : XAI (EXplainable AI) feature importance explanation gives the quantified results of feature’s impact on model’s predictions.

Syntactic constructs

ML model

Feature
Type

name

expression

declaration

…

Features

Vulnerability type

Name (1.0)

Expression (0.78)

Declaration (0.64)

XAI Feature Importance Explanation

…

(Value: Feature contribution value)

XAI (eXplainable AI) feature importance explanation, as a branch of XAI method, 
helps user to understand the model’s predictions and specific influence of individual features 
contributing to these predictions[2].
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Related work - Factors in Code Representation Techniques

Figure 3: The taxonomy of factors under various code feature representation techniques.
our contribution: extension to the feature factor graininess from work [4].
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Related work
Text-based code vulnerability detection：
• primarily focus on refining processes and improving model for higher detection accuracy, transferring 

knowledge from nature language process (Transformer models[5,6,7], CodeBERT[8], etc). 
• Factors Explanation: 

- Token type: Both code body and comments matters[9]; Transformer-based model also value separator 
symbols (commas, etc.)[10]. 

- Token Frequency: Preserving token frequency improves model performance [11].
- Token Length: Limiting token length leads to information loss [12] (max 512 tokens in [12]).
- Token Attention value:

- In NLP task, attention values potentially indicate token importance[13], however caution is needed 
for this conclusion[14].

- In code vulnerability task, attention value explanations stay at individual code snippets level[15,16] 
by mapping attention value, lack of cross-validation with XAI methods for representing 
importance.
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Related work
Graph-based code vulnerability detection：
• Code Representation: 

- Abstract Syntax Tree is majority of the exiting study [4], but combinations multiple graphs based on AST become 
recently trend [3]. 

- State-of-the-art models Code2Vec(AST) [18], GraphCodeBert(DFG)[19], Devign (Combine)[20], GraphVecCode(AST)[21].

• Factors explanation: 
- Code2Vec[18] and MIL[22]techniques provide explainability at the AST path level, suggesting the importance of paths 

on individual code snippets. 
- Refer to syntactic constructs, names, identifier, and parameter play a significant role in vulnerability tasks, as 

highlighted by various studies[23,24,25].
- CWE(Common Weakness Enumeration) developed the weakness type and gather similar types into a tree structure.

Despite insights on certain crucial identifiers, a gap exists in the complete evaluation of all syntactic 
constructs across different vulnerability types, suggesting the need for further exploration in this area.
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Research Questions

RQ3. How do the CWE similarity summarized by syntactic constructs' importance explanations 
align with expert-defined results?

RQ1. How do measure the code textual factors influence on the performance of transformer-
based models in code vulnerability detection tasks?

RQ2. How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s 
prediction for different software vulnerability types?

Text-based

Graph-based

Graph-based

Three factors: Code Token Length, Code Token Type, Code Token Attention Value 

Aim to identify and quantify the impact of syntactic constructs linked to code vulnerabilities

To evaluate the effectiveness of similarity results from XAI approach with expert-defined baseline.

(This talk 
focus RQ2&3)



Presentation Overview
• Introduction
• Background of code vulnerability 

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion, Contribution, Reference, Discussion. 
12



13

Methodology Graph-based factors assessment – 

     Syntactic constructs feature explanation (RQ2)

Figure 4. The overall framework of explainable syntactic constructs factors evaluation

Dataset: Juliet, OWASP, Draper benchmark projects.
GraphCodeVec[21]: novel sota model for creating a generalizable  graph-based, task-agnostic code learning that leverages Graph Convolutional Networks (GCN)
XAI methods: SHAP[26], Mean-Centroid Preddiff[13].

To answer RQ2: How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s prediction for 
different software vulnerability types?

Step1-data preprocessing Step2- model pre-training

Step3- syntactic constructs influence explanation
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Methodology Graph-based factors assessment -CWE Similarity (RQ3)

Figure 5. The overall framework of XAI summarized CWE similarity validation 
with baseline

CWE Similarity Baseline: https://cwe.mitre.org/data/definitions/1000.html

To answer RQ3: How do the CWE similarity summarized by syntactic constructs' importance explanations align with 
expert-defined results?

Step1- Summarize CWE similarity from XAI explanation

Step2- Cross validation with baseline

- Given two CWEs’ feature importance 
orders, CWE similarity value is 𝜌 :

Where Κ𝜏 Kendal tau ranking distance. 

Step1- Summarize CWE similarity from XAI explanation
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Figure 5. The overall framework of XAI summarized CWE similarity 
validation with baseline

CWE Similarity Baseline: https://cwe.mitre.org/data/definitions/1000.html

To answer RQ3: How do the CWE similarity summarized by syntactic constructs' importance explanations align with 
expert-defined results?

Step1- Summarize CWE similarity from XAI explanation

Step2- Cross validation with baseline

Step2- Cross validation with baseline

We define three metrics  to compare 
CWE similarity from our XAI approach and baseline.

- TopN Hit Rate: if CWE similarity pair in baseline is within 
the TopN similar of XAI results: 

- Avg Similarity score : calculates the average normalized 
similarity score for all CWEs within a category in the 
baseline table

Methodology Graph-based factors assessment -CWE Similarity (RQ3)

- Mean Reciprocal Rank : calculates the reciprocal of the rank 
of the first correct answer, within the XAI ranking list.
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Experiment Results - Syntactic constructs feature explanation (RQ2)

Figure 6-1.  Source Code: a code snippet of CWE789

Figure 6-2. AST structure code: extract AST information of the code 
snippet, includes code token node, and the AST path.

Step 1-data preprocessing

Figure 6-3. Masking AST path with syntactic construct (left unmarked, right marked)

From Figure 4 
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Experiment Results - Syntactic constructs feature explanation (RQ2)
Step2&3- model pre-training, syntactic constructs influence explanation

From Figure 4 

From step2, we observe GraphCodeVec + TextCNN perform consistent well.

Figure 7: syntactic constructs feature explanations results (Step 3) for all CWEs

Buffer Errors 

Syntactic construct features and 
their contribution value 
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Answering Research Questions
RQ2. How do syntactic constructs in Abstract Syntax Trees (AST) contribute to model’s 
prediction for different software vulnerability types?

Aim to identify and quantify the impact of syntactic constructs linked to code vulnerabilities

• The importance of syntactic constructs varies from CWE type, and the dataset.

• However, constructs such as statement, name, and parameters have a general high impact on 
code vulnerability types. 
ü Similar findings that names, identifier(statement), and parameter play a significant role in 

vulnerability tasks, in studies[23,24,25]

• Several CWE type sharing high similarity based on feature importance order. (CWE 78,79, 89)
ü As a motivation of RQ3
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Experiment Results - CWE Similarity (RQ3)

Step1- Summarize CWE similarity from XAI explanation

From Figure 5 

Figure 8: CWE similarity distance value from syntactic construct 
feature importance based on XAI approach

Ø CWE120 and CWE119 are 
more similar.

Ø CWE469 & CWE 476 are less 
similar with CWE 119&120.
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Experiment Results - CWE Similarity (RQ3)

Step2: CWE similarity results cross validation with baseline

From Figure 5 

Table1: CWE categorized by baseline similarities

Table2: CWE Similarity Evaluation Results

Ø Our CWE similarity summary from XAI effectively align with baseline 
with 77.8% Top1 Hit rate. 
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Answering Research Questions
RQ3. How do the CWE similarity summarized by syntactic constructs' importance explanations 
align with expert-defined results?

To evaluate the effectiveness of similarity results from XAI approach with expert-defined baseline.

• Our CWE similarity evaluation method efficiently identifies related CWEs, achieving a hit rate of 
77.8% for the most similar CWE (Top-1) and 88.9% for the top five similar CWEs (Top-5).

• In our evaluation, only two instances - CWE22 and CWE36 (2 out of 20) did not meet the 
baseline similarities.



Presentation Overview
• Introduction
• Background of code vulnerability 

• XAI Feature importance explanation

• Related work
• Factors in Code Representation Techniques

• Research Questions

• Methodology
• Text-based factors assessment

• Graph-based factors assessment

• Experiment results (Graph-based factors assessing).

• Conclusion Contribution, Reference, Discussion. 
23



24

Conclusion Contribution

ü We extend the taxonomy of code representation techniques by examining them at the 

feature factor level.

ü Our study provides a comprehensive evaluation of the importance of all syntactic constructs, 

complementing previous studies that focused only on top-valued constructs.

ü By leveraging rankings of syntactic constructs, we effectively analyze and validate CWE 

similarity, comparing our results to expert-defined baselines to confirm the effectiveness of 

our XAI explanation approach.
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Appendix 1 - Syntactic constructs feature explanation (RQ2)

Syntactic Constructs and Categories in the software
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Appendix 2 - Syntactic constructs feature explanation (RQ2)

Step2&3- model pre-training, syntactic constructs influence explanation

From Figure 4 

From step2, we observe GraphCodeVec + TextCNN perform consistent well (88.4%, 89.9% on 
F1-Score for Juliet, Draper dataset) than GraphCodeVec + Random Forest or Transformer. 
We preform XAI based on GraphCodeVec + TextCNN.

Figure 7: Feature explanations results (Step 3) for CWE from OWASP dataset.

Meta syntactic 
construct features and 
their feature importance 
order

Related Feature 
Contribution Value


