
A Large-Scale Exploratory Study on the Proxy
Design Pattern in Ethereum Blockchain

Amir M. Ebrahimi Bram Adams Gustavo A. Oliva Ahmed E. Hassan

2

The Proxy Design Pattern: A cornerstone of
conventional software design

The GoF Proxy Design Pattern

3

• Ethereum introduced smart contracts, a
software that runs on Ethereum blockchain
• Transactions is the way to interact with a

contract

Programable blockchains offer unique features to
application development

01.
Decentralization

02. Tamper-
proof
transactions

03. Traceability 04.
Transparency

05. Security

3

05. Security

A sample transaction

1

An Externally owned account represents either a user or developer

call

call

4

Smart contracts are not monolithic applications

The monthly ratio of multi-contract transactions

1. How prevalent are proxy
contracts?

2. How are proxy contracts
integrated into
applications?

5

• How do developers upgrade smart contracts despite
immutability?
• Solution: Upgradeability proxy contracts

1. How prevalent are different types of proxies?
2. Tracking proxies is critical for security reasons
• Lack of techniques that effectively detect proxies accurately, at

scale and in a timely manner

Proxy contracts: a dual-blade, enabling maintenance
while fracturing blockchain immutability.

6

Dataset & research questions

Dataset Ethereum’s dataset [Aug. 2015 to Sep. 2022]
50M smart contracts
1.6B transactions

Research
Questions

RQ1: How prevalent is the proxy mechanism in the Ethereum
ecosystem?
RQ2: What are different creational patterns for deploying proxy
contracts?
RQ3: What are the different types and properties of proxy
contracts?

7

• A proxy has two signatures:
i. It shall use the delegatecall
ii. The proxy contract shall have a similar interface to the actual serving

contract’s ones.

• Our method matches the behavior of over 50M smart contracts
against the two proxy signatures

Proxy Detection method: Our method efficiently
identifies all proxy contracts in under 15 minutes

8

• Ground truth dataset (385 randomly labeled contracts)
§ Achieve 100% precision and recall

• Compared our performance with Salehi et. al’s work.
§ We detected 300K more proxy contracts

Evaluation: Our method exhibits perfect precision and
recall and outperformed a previous study

9

• Prevalence metrics
1. General ratio of proxy contracts
2. Stakeholder adoption
3. Smart contracts design
4. Usage context

RQ1: How prevalent is the proxy mechanism in the
Ethereum ecosystem?

10

General ratio: 14% of all deployed contracts are
proxies.

~50M deployed contracts

Proxy contracts share of all deployed contracts

~7.2M (14%) are
proxy contracts

11

Stakeholder adoption: Over two-thirds of all EOAs who
deployed a contract, at least deployed one proxy contract too

The monthly cumulative ratio of EOAs who deployed a proxy contract

Adoption rate as of sep. 2022

12

Design: Proxy contracts are increasingly being used in the
design of modular applications.

The monthly ratio of multi-contract transactions that involve at least one proxy contract.

13

Method
 For each proxy

we mined its transactions
to figure out

how they are deployed

RQ2: What are the different creational patterns for
deploying proxy contracts?

14

We found 12 creational patterns for deploying proxy
contracts.

Prac. countDeployment styleCreational Pattern Proxy instance countId

Item Stands for

> Deployment operator

EOA Practitioner/Developer

P Proxy smart contract

FA Factory smart contract

Reference for reading creational patterns

Off-chain is the most popular
deployment style among practitioners.

Most proxy contracts are created
using an on-chain style

15

On-chain vs Off-chain deployment styles

Off-chain On-chain

Smart contracts is deployed on blockchain Smart contracts is deployed on blockchain

Deployment Infrastructure operates outside of
blockchain

Deployment Infrastructure operates on
blockchain

Deployment scripts are written in Web3,
JavaScript

A smart contract instantiates another smart
contract

Flexible Less flexible

Less transparent & secure Transparent & secure

Lower interoperability among contracts Higher interoperability among contracts

Less likely for deploying proxy clones More likely for deploying proxy clones

Often when a lower number of proxy contracts
are deployed

Often when a lower number of proxy contracts
are deployed

16

RQ3: What are the different types and properties of
proxy contracts?

17

Labels
• Upgradeability proxy
• Forwarder proxy

Sample
• 385 random proxy contracts

Method
• Qualitative Study

Most proxies (86%) are forwarders whereas 14% are
for upgradeability purposes.

Research gap:
Automatic approaches that
detect upgradeability proxy

contracts and monitor
releases

18

• Tool
• Evm-proxy-identification

• Reference implementations
• 7 known proxy reference

implementations

• Sample
• 16,602 random proxy contracts

41.3% of proxies are minimal proxies, while 40.7%
are unknown implementations.

19

• Proxies reduce transparency in marketplaces.

• Future studies should aim to study smart contracts release
engineering via upgradeability proxies.

Implications to practice

20

Edu.Ebrahimi@gmail.com

21

22

RQ3: What are the different types and properties of
proxy contracts?

23

Effective and efficient method for detecting proxy
contracts.

24

RQ1: How prevalent is the proxy mechanism in the
Ethereum ecosystem?

25

RQ2: What are the different creational patterns for
deploying proxy contracts?

RQ3: What are the different types and properties of proxy
contracts?

26

A. 86% of proxies are forwarders, whereas 14% enable
upgradeability

B.The majority of proxies (60%) are implemented according to
one of seven reference implementations.

C. 41% of all proxies follow the Minimal Proxy (EIP-1167)
reference implementation.

Summary

The proxy design pattern in smart contracts

Upgradeability proxy contracts

28

Prem-study: Is the proxy pattern a relevant practice in the
domain of smart contracts?

29

• A proxy increases
• modularity and encapsulation

• If the proxy pattern is employed,
then there must be some
transactions in which different
contracts interact with each.

30 The monthly ratio of multi-contract transactions

• A proxy uses
• Delegatecall type of call to

interact with the actual contract

• If the proxy pattern is employed,
the multi-contract transaction
must use delegatecall

31
The monthly ratio of multi-contract transactions

that use various types of calls.

• Not every delegatecall is a sign
of using proxy contracts, e.g.,
• Library calls use delegatecall
• Etc.

• Use Etherscan to analyze
• 385 multi-contract transactions

with at least one delegatecall
operation

32
The monthly ratio of multi-contract transactions

that use various types of calls.

• Not every delegatecall is a sign
of using proxy contracts, e.g.,
• Library calls use delegatecall
• Etc.

• Use Etherscan to analyze
• 385 multi-contract transactions

with at least one delegatecall
operation

33
The monthly ratio of multi-contract transactions

that use various types of calls.

98.5% of the studied

sample uses a proxy

contract

Prem-study: Is the proxy pattern a relevant practice in the
domain of smart contracts?

34

1. An increasing trend of up to 33% monthly in the ratio of transactions
involving multiple contracts.

2. Most importantly, 98.5% of multi-contract transactions with
delegatecalls involve a proxy contract.

Summary

RQ2: What are the different creational patterns for
deploying proxy contracts?

35

1. We found 12 creational patterns that are categorized into two
major styles: i) on-chain and ii) off-chain deployment styles.

2. While the off-chain deployment of proxies is the most
frequently chosen (94.6%) style, the majority (99.3%) of
proxies are deployed automatically using the on-chain style..

Summary

Obs #1: We found 12 different creational patterns for
deploying proxy contracts.

36

Obs #1: We found 12 different creational patterns for
deploying proxy contracts.

37 A metamodel that summarizes proxy creational patterns

Proxy Detection Approach & Evaluation

39

i. Ground truth dataset (385
random contracts)
• 90 proxy contracts
• 295 others

ii. Compared our
performance with Salehi
et. al’s work.

40

• Ground truth dataset (385
random contracts)
• 90 proxy contracts
• 295 others

41

The performance of our proxy detection approach.

Label Precisio
n

Recall F1-measure

Proxy 100% 68.9% 81.6%
Other 91.3% 100% 95.5%

• Ground truth dataset (385
random contracts)
• 90 proxy contracts
• 295 others

42

Label Precisio
n

Recall F1-measure

Proxy 100% 68.9% 81.6%
Other 91.3% 100% 95.5%

Proxy

Other 295

28

0

62

ProxyOther Other

O
th
er

Predicted Label
Tr

ue
 L

ab
el

• Ground truth dataset (385
random contracts)
• 90 proxy contracts
• 295 others

43

Label Precisio
n

Recall F1-measure

Proxy 100% 68.9% 81.6%
Other 91.3% 100% 95.5%

Proxy

Other 295

28

0

62

ProxyOther Other

O
th
er

Predicted Label
Tr

ue
 L

ab
el

28 inactive
proxy

contracts

Non-Scope

• Compared our performance
with Salehi et. al’s work.
• Both approaches are

behavioral
• Sep-05-2020 to Jul-20-2021

44

• Compared our performance
with Salehi et. al’s work.
• Both approaches are

behavioral
• Sep-05-2020 to Jul-20-2021

45

Approach Number of proxy
contracts

Salehi et. al. approach 1,427,215
Our approach 1,723,309

We detected
~ 300K more proxies

RQ1: How prevalent is the proxy mechanism in the
Ethereum ecosystem?

46

A. Our approach
i. Efficiently mines active proxy contracts (in under 20 min)
ii. Achieve perfect precision and recall
iii. Improves upon previous studies

B.Over 14% of contracts are proxies.
C. Our assessment from the three viewpoints of usage context,

stakeholder adoption, and smart contracts design shows that
the tendency for using proxy contracts is growing.

Summary

