A Large-Scale Exploratory Study on the Proxy Design Pattern in Ethereum Blockchain

The Proxy Design Pattern: A cornerstone of conventional software design

The GoF Proxy Design Pattern

Programable blockchains offer unique features to application development

- Ethereum introduced **smart contracts**, a software that runs on Ethereum blockchain
- **Transactions** is the way to interact with a contract

01. Decentralization	02. Tamper- proof transactions
03. Traceability	04. Transparency
05. Security	

An Externa	lly owned acc	ount represen	ts either a use	r or developer			
Overvi	ew Internal Txns	Logs (1) State	Comments				More ~
t≣ T	ne contract call Fro r	EOA n 0xbC2eE429961	C1 2D9 To 0x9689Df2	c262E49 produced <mark>1</mark> Int	ernal Transactions	③ ADVANCED M	DDE: 🔵
Туре	Trace Address	From	call	То		Value	Gas Limit
💙 c	all_1	0x9689Df2	c262E49 [□ →	C2 →] 0x9D163E97380	613 🗘	0 ETH	96,627

A sample transaction

Smart contracts are not monolithic applications

- 1. How prevalent are proxy contracts?
- 2. How are proxy contracts integrated into applications?

The monthly ratio of multi-contract transactions

Proxy contracts: a dual-blade, enabling maintenance while fracturing blockchain immutability.

- How do developers upgrade smart contracts despite **immutability**?
 - Solution: Upgradeability proxy contracts
- 1. How prevalent are different types of proxies?
- 2. Tracking proxies is critical for security reasons
 - Lack of techniques that effectively detect proxies accurately, at scale and in a timely manner

Dataset & research questions

Dataset	Ethereum's dataset [Aug. 2015 to Sep. 2022] 50M smart contracts 1.6B transactions		
Research Questions	Î	RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?	
		RQ2: What are different creational patterns for deploying proxy contracts?	
		RQ3: What are the different types and properties of proxy contracts?	

Proxy Detection method: Our method efficiently identifies all proxy contracts in under 15 minutes

- A proxy has two signatures:
 - i. It shall use the delegatecall
 - ii. The proxy contract shall have a similar interface to the actual serving contract's ones.
- Our method matches the **behavior** of over 50M smart contracts against the two proxy signatures

Evaluation: Our method exhibits perfect precision and recall and outperformed a previous study

- Ground truth dataset (385 randomly labeled contracts)
 - Achieve 100% precision and recall
- Compared our performance with Salehi et. al's work.
 - We detected 300K more proxy contracts

RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

• Prevalence metrics

- 1. General ratio of proxy contracts
- 2. Stakeholder adoption
- 3. Smart contracts design
- 4. Usage context

General ratio: 14% of all deployed contracts are proxies.

Proxy contracts share of all deployed contracts

Stakeholder adoption: Over two-thirds of all EOAs who deployed a contract, at least deployed one proxy contract too

The monthly cumulative ratio of EOAs who deployed a proxy contract

Design: Proxy contracts are increasingly being used in the design of modular applications.

The monthly ratio of multi-contract transactions that involve at least one proxy contract.

12

RQ2: What are the different creational patterns for deploying proxy contracts?

Method

For each proxy we mined its transactions to figure out **how** they are deployed

We found 12 creational patterns for deploying proxy contracts.

deployment style among practitioners. Id **Creational Pattern Deployment style Proxy instance count** Prac. count 50,174 (0.69%) 20,210 (94.66%) EOA > POff-chain 1 1,385 (6.49%) 6,618,012 (91.39%) $\mathbf{2}$ EOA > FA > POn-chain Most proxy contracts are created using an on-chain style Item Stands for Deployment operator > EOA Practitioner/Developer Ρ Proxy smart contract FA Factory smart contract

Off-chain is the most popular

Reference for reading creational patterns

On-chain vs Off-chain deployment styles

Off-chain	On-chain
Smart contracts is deployed on blockchain	Smart contracts is deployed on blockchain
Deployment Infrastructure operates outside of blockchain	Deployment Infrastructure operates on blockchain
Deployment scripts are written in Web3, JavaScript	A smart contract instantiates another smart contract
Flexible	Less flexible
Less transparent & secure	Transparent & secure
Lower interoperability among contracts	Higher interoperability among contracts
Less likely for deploying proxy clones	More likely for deploying proxy clones
Often when a lower number of proxy contracts are deployed	Often when a lower number of proxy contracts are deployed

RQ3: What are the different types and properties of proxy contracts?

Most proxies (86%) are forwarders whereas 14% are for upgradeability purposes.

Labels

- Upgradeability proxy
- Forwarder proxy

Sample

• 385 random proxy contracts

Method

• Qualitative Study

Research gap: Automatic approaches that detect upgradeability proxy contracts and monitor releases

41.3% of proxies are minimal proxies, while **40.7%** are unknown implementations.

- Tool
 - Evm-proxy-identification
- Reference implementations
 - 7 known proxy reference implementations
- Sample
 - 16,602 random proxy contracts

Implications to practice

- Proxies reduce transparency in marketplaces.
- Future studies should aim to study smart contracts release engineering via upgradeability proxies.

Effective and efficient method for detecting proxy contracts.

RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

22

RQ3: What are the different types and properties of proxy contracts?

Effective and **efficient** method for detecting proxy contracts.

RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

RQ2: What are the different creational patterns for deploying proxy contracts?

RQ3: What are the different types and properties of proxy contracts?

Summary

- A. 86% of proxies are forwarders, whereas 14% enable upgradeability
- B. The majority of proxies (60%) are implemented according to one of seven reference implementations.
- C. 41% of all proxies follow the Minimal Proxy (EIP-1167) reference implementation.

The proxy design pattern in smart contracts

Upgradeability proxy contracts

Prem-study: Is the proxy pattern a relevant practice in the domain of smart contracts?

- A proxy increases
 - modularity and encapsulation

	Proxy Contract		Logic Contract (V1)
request	+ logic_pointer: Address	delegates	+ Operation1()
Jser	+ Fallback(): default	,	+ Operation2() + OperationN()

 If the proxy pattern is employed, then there must be some transactions in which different contracts interact with each.

The monthly ratio of multi-contract transactions

- A proxy uses
 - Delegatecall type of call to interact with the actual contract
 - If the proxy pattern is employed, the multi-contract transaction must use delegatecall

The monthly ratio of multi-contract transactions that use various types of calls.

- Not every delegatecall is a sign of using proxy contracts, e.g.,
 - Library calls use delegatecall
 - Etc.
- Use Etherscan to analyze
 - 385 multi-contract transactions with at least one delegatecall operation

The monthly ratio of multi-contract transactions that use various types of calls.

- Not every delegatecall is a sign of using proxy contracts, e.g.,
 - Library calls use delegatecall
 - Etc.
- Use Etherscan to analyze
 - 385 multi-contract transactions with at least one delegatecall operation

The monthly ratio of multi-contract transactions that use various types of calls.

Prem-study: Is the proxy pattern a relevant practice in the domain of smart contracts?

Summary

- 1. An increasing trend of up to 33% monthly in the ratio of transactions involving multiple contracts.
- 2. Most importantly, 98.5% of multi-contract transactions with delegate calls involve a proxy contract.

RQ2: What are the different creational patterns for deploying proxy contracts?

Summary

1. We found 12 creational patterns that are categorized into two major styles: i) on-chain and ii) off-chain deployment styles.

2. While the off-chain deployment of proxies is the most frequently chosen (94.6%) style, the majority (99.3%) of proxies are deployed automatically using the on-chain style..

Obs #1: We found 12 different creational patterns for deploying proxy contracts.

Obs #1: We found 12 different creational patterns for deploying proxy contracts.

Id	Creational pattern	Catego	Externally Owned Account
1	EOA > P	Off-chair	(EOA)
2	$\mathrm{EOA}>\mathrm{FA}>\mathrm{P}$		deploys 1
3	$\mathrm{EOA} > \mathrm{PF} > \mathrm{P}$		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4	$\mathrm{EOA} > \mathrm{FA} > \mathrm{PF} > \mathrm{P}$		deploys Smart Contract 1*
5	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{P}$		
6	$\mathrm{EOA} > \mathrm{PF} > \mathrm{PF} > \mathrm{P}$		Extends Extends
7	$\mathrm{EOA} > \mathrm{FA} > \mathrm{PF} > \mathrm{PF} > \mathrm{P}$		Factory Contract Proxy
8	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{FA} > \mathrm{P}$		(FA) (P)
9	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{PF} > \mathrm{P}$		
10	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{FA} > \mathrm{FA} > \mathrm{P}$		Extends
11	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{PF} > \mathrm{PF} > \mathrm{P}$		Proxy Factory
12	$\mathrm{EOA} > \mathrm{FA} > \mathrm{FA} > \mathrm{PF} > \mathrm{PF} > \mathrm{PF} > \mathrm{P}$	On-chair	(PF)

A metamodel that summarizes proxy creational patterns

Proxy Detection Approach & Evaluation

- i. Ground truth dataset (385 random contracts)
 - 90 proxy contracts
 - 295 others
- ii. Compared our performance with Salehi et. al's work.

- Ground truth dataset (385 random contracts)
 - 90 proxy contracts
 - 295 others

n	
Proxy 100% 68.9% 81.6%	
Other 91.3% 100% 95.5%	

- Ground truth dataset (385 random contracts)
 - 90 proxy contracts
 - 295 others

- Ground truth dataset (385 random contracts)
 - 90 proxy contracts
 - 295 others

- Compared our performance with Salehi et. al's work.
 - Both approaches are behavioral
 - Sep-05-2020 to Jul-20-2021

- Compared our performance with Salehi et. al's work.
 - Both approaches are behavioral
 - Sep-05-2020 to Jul-20-2021

ApproachNumber of proxy
contractsSalehi et. al. approach1,427,215Our approach1,723,309

We detected ~ 300K more proxies

RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

Summary

A. Our approach

- i. Efficiently mines active proxy contracts (in under 20 min)
- ii. Achieve perfect precision and recall
- iii. Improves upon previous studies

B. Over 14% of contracts are proxies.

C. Our assessment from the three viewpoints of usage context, stakeholder adoption, and smart contracts design shows that the tendency for using proxy contracts is growing.