
AI and Software Engineering:
Past, Present, and Future

Lionel Briand

http://www.lbriand.info

CSER 2021

2

Machine
Learning

Natural
Language
Processing

Logic-based
Reasoning

AI in SE

Search

ExhaustiveMetaheuristic

CP, SAT,
SMT

Evolutionary
Computing

1991

Predicting faults in flight dynamics
software

3

Colleagues and friends:
“Machine learning?

Why would you want to apply this?
This is not serious.”

Objectives
• Report on many years of experience about leveraging

AI on industrial research SE projects.

• Personal experience, not a survey.

• Partial presentation (very much so).

• Focus on real problems, real solutions, in real
contexts.

• Example projects and lessons learned.

4

< ~2000

Making software
development predictable

5

Context

• Software development data repositories were few.

• Data available to researchers was scarce and hard to use.

• Research focused on resource and defect prediction.

• Hundreds of research papers.

6

Evolving Telecom Systems

7

Class complexity
- Class size
- Coupling
- Cohesion
- …

For each type of Change Request (CR) involving a
class:
- Number of CRs
- Lines of code added and deleted in this class
- Number of CPs involving this class
- Total number of files changed in CRs
- Total number of tests failed in CRs
- Total number of developers involved in CRs
- Total number of past CRs of the developers

1.0

0.0Not Faulty

Faulty

Machine
Learning

Class change and fault history:
For each type of CR involving this class
And for the past three releases:
- number of CRs (n-1, n-2, n-3)

Arisholm et al. Journal of Systems and Software, 2010
Erik

Arisholm
Eivind

Johannessen

Tree Maps – Class Level

8

Cost-Effectiveness

9

Process
Change, fault, human,

product
Data

Learning
fault patterns

Fault
Patterns

Focus V&VRanking,
classification

Additional V&V

Actionable?

10

Process
Change, fault, human,

product
Data

Learning
fault patterns

Fault
Patterns

Focus V&VRanking,
classification

Additional V&V

Mapping predictions to V&V practices is not easy

ML for Prediction: Benefits

• Some machine learning techniques, such as random forests, tend to be
more accurate than classical statistical techniques, e.g., based on
regression.

• More flexible and robust (less assumptions), less prone to overfitting, etc.

• As larger amounts of data became increasingly available, their
application became more widespread.

• Mining Software Repositories

• Many more applications: Test selection and prioritization, flaky tests,
requirements identification and compliance, etc.

11

ML for Prediction: Challenges

• Building and maintaining a corporate prediction system.

• We are predicting moving targets as development practices
and systems evolve quickly.

• Lots of papers on how to build prediction models.

• Very few papers on how to effectively use such prediction
models, their benefits, etc.

• How to use them in a cost-effective way is far from obvious.

12

> ~2000

The rise of Search-Based SE
(SBSE)

13

Why SBSE?

• After decades of research, there were no scalable, practical
solutions for many automation problems.

• The community realized that many automation problems
could be re-expressed as search problems.

• Stochastic optimization, Meta-heuristic search.

• Increasing realization that Search-Based Software
Engineering has a much wider potential and is a research
topic in itself.

14

Harman and Jones, “Search-Based Software Engineering”, 2001

Optimization

Local Optimum

Global Optimum

M
in

im
ize

Find a value x* which minimises (or maximises) the objective/fitness
function f over a search space X:

∀ x ∈ X : f(x*) ⩽ f(x)

15

• No closed-form analytical
description

• Black-box optimization
• Meta-heuristic search

Genetic Algorithms (GAs)

Genetic Algorithm: Population-based, search algorithm
inspired be evolution theory

Natural selection: Individuals that best
fit the natural environment survive

Reproduction: surviving individuals
generate offsprings (next generation)

Mutation: offsprings inherits
properties of their parents with some
mutations

Iteration: generation after generation
the new offspring fit better the
environment than their parents

16

~1995

The first time I read about genetic
algorithms, meta-heuristic search …

17

My first reaction:
“You must be kidding”

Example: Key-points Detection

• Automatically detecting key-points in
an image or a video, e.g., face
recognition, drowsiness detection

• Key-point Detection DNNs (KP-DNNs) are
widely used to detect key-points in an image

• It is essential to check how accurate
KP-DNNs are when applied to various
test data

18

Ground truth
Predicted

Problem Definition
• In the drowsiness or gaze detection problem, each Key-Point (KP) may be

highly important for safety

• Each KP leads to a requirement and test objective

• For our subject DNN, we have 27 requirements

• Goal: cause the DNN to mis-predict as many key-points as possible

• Solution: many-objective search algorithms combined with simulator

19

Fitash
Ul Haq

Donghwan
Shin

Ul Haq et al., “Automatic Test Suite Generation for Key-
points Detection DNNs Using Many-Objective Search”,
ACM ISSTA 2021

Overview

20

Input Generator Simulator

Input (vector)

DNNFitness
Calculator

Actual Key-points Positions

Predicted Key-points Positions

Fitness Score
(Error Value) Most Critical

Test Input

Test
Image

MOSA: Many-Objective Search-
based Test Generation

21

Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

These points are
better than others

Panichella et. al.
ICST 2015

Results

• Our approach is effective in generating test suites that cause the DNN to
severely mispredict more than 93% of all key-points on average

• Not all mispredictions can be considered failures …

• Some key-points are more severely predicted than others, detailed
analysis revealed two reasons:

• Under-representation of some key-points (hidden) in the training data

• Large variation in the shape and size of the mouth across different 3D
models (more training needed)

22

Interpretation

• Regression trees

• Detailed analysis to find the root causes of high NE values, e.g., shadow on the location of
KP26 is the cause of high error (NE) values

• The average MAE from all the trees is 0.01 (far less than the pre-defined threshold: 0.05)
with average tree size of 25.7. Excellent accuracy, reasonable size.

23

Image Characteristics Condition NE

! = 9 ∧ # < 18.41 0.04
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % < 17.06 0.26
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ 17.06 ≤ % < 19 0.71
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % ≥ 19 0.36

Representative rules derived from the regression tree for KP26
(M: Model-ID, P: Pitch, R: Roll, Y: Yaw, NE: Normalized Error)

(A) A test image satisfying
the first condition

(B) A test image satisfying
the third condition

NE = 0.013 NE = 0.89

SBSE Applications

• Many applications turned out to be promising: Requirements
prioritization, refactoring, test automation, program repair,
etc.

• My first SBSE paper: “Using genetic algorithms and coupling
measures to devise optimal integration test orders.” SEKE’02

• Many articles since then …

24

SBSE: Benefits

• Effective automation mechanism for a wide set of SE
problems.

• Potentially high scalability: No exhaustive search.

• Can be effective under certain conditions: Search landscape,
fitness computation, etc.

• Can be effectively parallelized.

25

SBSE: Challenges

• Performance can be an issue in large, high-dimensionality search spaces

• Computationally expensive fitness functions, e.g., simulations.

• Validation is experimental and computationally expensive.

• Many problems require dedicated, tailored search algorithms, e.g., many-
objective search in testing.

• Devising the right search algorithm for a given problem requires expertise and
experiments.

• Devising the right fitness functions is often a trade-off and is a trial and error
process.

26

> ~2004

Increasingly Powerful
Natural Language

Processing

27

NLP
• Process and analyze large amounts of natural language data.

• Rule-based versus statistical NLP (based on machine
learning).

• Preprocessing: Tokenizer, sentence splitter, POS tagger.

• Parsing: Constituency, dependency, semantic.

• NLP has made huge leaps forward (e.g., language models).

28

Arnaoudova et al., “The Use of Text Retrieval and Natural Language Processing in Software Engineering”, ICSE’15

Why NLP?

• Significant documentation of many kinds in natural
language …

• Example: NL Requirements

• are prominent throughout industry sectors, even safety-
critical ones,

• are not fading away any time soon.

29

Why NLP?

• Check well-formedness of NL artifacts

• Extract useful information from NL artifacts

• Check consistency and completeness of NL artifacts

• Understand relationship and dependencies between NL
artifacts (e.g., traceability)

30

Experiences in Requirements
Engineering

• Conformance of requirements with templates. (Arora et
al.)

• Impact analysis of requirements changes (Arora et al.,
Nejati et al.)

• Identification and demarcation of requirements in large
documents. (Abualhaija et al.)

• Requirements-driven system testing. (Wang et al.)

31

Context

Automotive Embedded Systems

32

• Small but safety critical systems
• Traceability from requirements to system test cases

(ISO 26262)
• Requirements act as a contract
• Many requirements changes, leading to negotiations

• In many sectors, traceability between requirements and
test cases is required by standards, customers, certifiers
...

• Requirements change, and therefore test cases as well.

• Huge traceability matrices are built and maintained
manually.

• Academic work on automatically matching requirements
and test cases is not sufficiently accurate or practical.

Traceability

33

Problem

Automatically verify the compliance of

software systems with their functional

requirements in a cost-effective way

34

Objective

Support the Generation of
System Test Cases from

Requirements in Natural Language

Traceability is a by-product

35

Fabrizio
Pastore

Chunhui
Wang

Wang et al., “Automatic Generation of Acceptance Test
Cases from Use Case Specifications: an NLP-based
Approach”, IEEE TSE, 2020

Textual descriptions are often ambiguous,
Incomplete, and not analyzable automatically

Problem

36

Stick to natural language but …

Compromise?

Restrict its usage so as to make it amenable
to NLP for system testing purposes

Find the right balance

37

• Restricted Use Case Modeling (RUCM)

• Experiments: RUCM yields better use cases

Yue et al. ACM TOSEM, 2013

Restricted Use Case
Specifications

• More analyzable with NLP

• Use Case Modeling is widely used

• Compliance is tool-supported (NLP)

38

RUCM Specifications Example

Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP

39

RUCM Specifications Example
Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP
Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child.
3. …
4. RESUME STEP 6. 40

Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child.
3. …
4. RESUME STEP 6.

NLP for information extraction

DOMAIN ENTITY

41

Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child.
3. …
4. RESUME STEP 6.

CONSTRAINT

NLP for information extraction

42

UseCaseStart

Input

Condition

Condition

Output

Exit

Condition

Internal

Internal

Include"no error has been detected"

"the weight is above 20 Kg"

"the weight is above 1 Kg"

Weight
DomainEntityTest Model

Use Case
Specifications

Executable Test Cases

Constraints capturing
the meaning of

conditions
Domain
Model

UMTG

Error.allInstances()
->forAll(i | i.isDetected = false)

Automated Generation of System Test Cases
for Embedded Systems from Requirements in NL

https://sntsvv.github.io/UMTG/
(Wang et al.)

https://sntsvv.github.io/UMTG/

UseCaseStart

Input

Condition

Condition

Output

Exit

Condition

Internal

Internal

Include INCLUDE USE CASE Self Diagnosis.

IF the weight is above 1 Kg THEN

The SeatSensor SENDS the weight TO the system.

The system sets the occupancy status to adult.

The system SENDS the occupant class TO AirbagControlUnit.

The system VALIDATES THAT no error has been detected.

The system sets the occupancy status to child.

The system VALIDATES THAT the weight is above 20 Kg.

Precondition: The system has been initialized.

OCL

OCL

OCL

OCL

System.allInstances()->forAll(s | s.initialized = true)
AND System.allInstances()->forAll(s | s.initialized = true)
AND Error.allInstances()->forAll(e | e.isDetected = false)
AND System.allInstances()

->forAll(s | s.occupancyStatus = Occupancy::Adult)

Path condition:

Constraint
Solving

(PLEDGE)

Test inputs:

https://sites.google.com/view/hybridoclsolver/

Soltana et al.

Challenge

Typically dozens of constraints

Engineers need help in defining constraints

48

Automatically Derive Formal Constraints

“The system VALIDATES THAT
no error has been detected.”

Error.allInstances()->forAll(i | i.isDetected = false)

OCLgen Based on NLP

49

(Wang et al., 2020)

OCLgen Solution

2. match words in the sentence with concepts in the domain model

BodySense.allInstances()
->forAll(i | i.occupancyStatus = Occupancy::Adult)

3. generate the OCL constraint using a verb-specific transformation rule

“The system sets the occupancy status to adult.”

actor affected by the verb final state

1. determine the role of words in a sentence (Semantic Role Labeling)

NLP in SE: Summary

• Increasingly powerful, many applications

• Wide variation across domain practices and documents.

• Inherent ambiguity and inconsistency of natural language.

• Relevant data is usually spread across artifacts.

• Designing the right NLP pipeline in not easy.

• NLP components are not fully accurate.

• Human in the loop.

53

Combining Strengths

54

Multidisciplinary Approaches

• Single-technology approaches rarely work in practice

• Meta-heuristic search, Machine learning

• NLP

• Solvers, e.g., CP, SMT

• Statistical approaches, e.g., sensitivity analysis

• System and environment modeling and simulation

55

Search+CP Example

56

Drivers
(Software-Hardware Interface)

Control Modules

Alarm Devices
(Hardware)

Multicore Architecture

Real-Time Operating System

System monitors gas leaks and fire in
oil extraction platforms

RTES: Concurrent Tasks

57

Tasks can trigger other tasks, and
can share computational resources
with other tasks

Each task has a deadline (i.e., latest
finishing time) w.r.t. its arrival time

Some task properties depend on
the environment, some are design
choices

!"

#$"%

&'"%

!(

#$(%

&'(%

)

!%
#$%%

&'%%

*("

#$"(
#$%(

&'"(
#$((

)

Stress Testing

59

IEC 61508 deems stress testing as
highly recommended for SIL 3-4

Stress Testing: “Testing in which a system is subjected to […]
harsh inputs […] with the intention of breaking it”

— Boris Beizer

Arrival times for aperiodic tasks Worst-case scenarios
wrt. missing deadlines

Finding Stress Test Cases is Hard

60

0
1
2
3
4
5
6
7
8
9

!", !#, !$ arrive at %&", %&#, %&$ and
must finish before '(", '(#, '($

!# can miss its deadline '(#
depending on when %&$ occurs!

0
1
2
3
4
5
6
7
8
9

!$

%&$

'($

!#

%&#

'(#

!"
%&"

'("

) = #

&+,--.+

!$

%&$

'($

!#

%&#

'(#

!"
%&"

'("

) = #

&+,--.+

A sequence of arrival times which is likely to
violate a task deadline characterizes a stress
test case

periodic triggered aperiodic periodic triggered aperiodic

Challenges and Solutions

• Ranges for arrival times form a very large input space

• Task interdependencies and properties constrain what
parts of the space are feasible

• Solution: We re-expressed the problem as a constraint
optimization problem and used a combination of constraint
programming (CP, IBM CPLEX) and meta-heuristic search
(GA)

• GA is scalable and CP offers guarantees

61

Combining CP and GA

62

Search Space

!"

!#

!$

!%

!&

!'

("

(#
($

(%

(&

('
)"

)#

)$

)%

)&

)'(∗

!∗

=)∗

The key idea behind GA+CP is to run complete searches
with CP in the neighbourhood of solutions found by GA

Di Alesio et al., “Combining genetic
algorithms and constraint programming to
support stress testing of task deadlines”,

ACM TOSEM 2015

Shiva
Nejati

Stefano
Di Alesio

Conclusions

63

The Road Ahead

• AI plays a key role in automating many software engineering tasks and
helping decision support

• Real solutions usually involve several techniques, combined to achieve the
best trade-offs.

• Real solutions strike a balance in terms of scalability, practicality,
applicability, and optimal results.

• Research in this field cannot be oblivious to context (e.g., domain): Working
assumptions, desirable trade-offs …

• We need more multi-disciplinary research driven by (well-defined) problems
in context.

67

AI and Software Engineering:
Past, Present, and Future

Lionel Briand

http://www.lbriand.info

CSER 2021

References

69

Selected References
• Arisholm et al., “A systematic and comprehensive investigation of methods to build and evaluate fault prediction

models”, Journal of Systems and Software, 2010

• Di Alesio et al. “Combining genetic algorithms and constraint programming to support stress testing of task
deadlines”, ACM Transactions on Software Engineering and Methodology, 2015

• Soltana et al., “Practical Constraint Solving for Generating System Test Data”, ACM TOSEM, 2020

• Ul Haq et al., “Automatic Test Suite Generation for Key-points Detection DNNs Using Many-Objective Search”, ACM
ISSTA 2021

• Yue et al., “Facilitating the transition from use case models to analysis models: Approach and experiments.”, ACM
TOSEM, 2013

• Wang et al., “Automatic Generation of Acceptance Test Cases from Use Case Specifications: an NLP-based Approach”,
IEEE TSE (accepted), 2020

70

Other References

71

References: CPS testing

• Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers: Scalable Search Using Surrogate
Models”, ASE 2014

• Matinnejad et al., “Automated Test Suite Generation for Time-Continuous Simulink Models”, ICSE 2016.

• Matinnejad et al., “Test Generation and Test Prioritization for Simulink Models with Dynamic Behavior”, IEEE
Transactions on Software Engineering, 2018

• Liu et al., “Effective Fault Localization of Automotive Simulink Models: Achieving the Trade-Off between Test Oracle
Effort and Fault Localization Accuracy”, Empirical Software Engineering (Springer), 2019

• Liu et al., “Simulink Fault Localisation: An Iterative Statistical Debugging Approach”, Software Testing, Verification &
Reliability (Wiley), 2016

• Ben Abdessalem et al., "Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms”, ICSE 2018

• Ben Abdessalem et al., "Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search”, ASE
2018

• Nejati et al., “Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models”,
ESEC/FSE 2019.

72

References: System Testing
• Wang et al., “Automatic generation of system test cases from use case specifications”, ISSTA 2015

• Wang et al., “Automatic Generation of Acceptance Test Cases from Use Case Specifications: an NLP-based Approach”,
IEEE TSE (accepted), 2020

• Wang et al., “Oracles for Testing Software Timeliness with Uncertainty”, ACM TOSEM, 2019

• Shin et al., “Test case prioritization for acceptance testing of cyber-physical systems”, ISSTA 2018

• Shin et al.,“HITECS: A UML Profile and Analysis Framework for Hardware-in-the-Loop Testing of Cyber Physical
Systems”, MODELS 2018

• Soltana et al., “Practical Constraint Solving for Generating System Test Data”, ACM TOSEM, 2020

• Shin et al., “Dynamic Adaptive Network Configuration for IoT Systems: A Search-based Approach”, ACM/IEEE SEAMS,
2020

73

References: Stress Testing

• Shousha et al., "Using Genetic Algorithms for Early Schedulability Analysis and Stress Testing in Real-Time Systems",
Journal of Genetic Programming and Evolvable Machines (Springer), 2006.

• Shousha et al., “A UML/MARTE Model Analysis Method for Uncovering Scenarios Leading to Starvation and Deadlocks
in Concurrent Systems”, IEEE Transactions on Software Engineering, 2012.

• Nejati and Briand, “Identifying Optimal Trade-Offs between CPU Time Usage and Temporal Constraints Using Search”,
ISSTA 2014

• Di Alesio et al. “Combining genetic algorithms and constraint programming to support stress testing of task
deadlines”, ACM Transactions on Software Engineering and Methodology, 2015

74

References: Security Testing

• Jan et al., Automatic Generation of Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE Transactions
on Software Engineering (TSE), 2019

• Appelt et al., A Machine Learning-Driven Evolutionary Approach for Testing Web Application Firewalls. IEEE
Transactions on Reliability (TR), 2018

• Appelt et al., Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. IEEE
International Symposium on Software Reliability Engineering (ISSRE 2017)

• Jan et al., Search-based Testing Approach for XML Injection Vulnerabilities in Web Applications. IEEE International
Conference on Software Testing, Verification and validation (ICST 2017)

• Jan et al., Automated and Effective Testing of Web Services for XML Injection Attacks. International Symposium on
Software Testing and Analysis (ISSTA 2016)

• Ceccato et al., SOFIA: An Automated Security Oracle for Black-Box Testing of SQL-Injection Vulnerabilities, IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016)

75

References: Requirements

• Arora et al. “Extracting Domain Models from Natural-Language Requirements: Approach and Industrial
Evaluation”, MODELS 2016

• Arora et al. “Automated Extraction and Clustering of Requirements Glossary Terms”, IEEE TSE, 2017

• Arora et al., “An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction”, ACM
TOSEM, 2019

• Nejati et al., “Automated Change Impact Analysis between SysML Models of Requirements and Design”, FSE 2016

• Abualhaija et al., “A Machine-Learning Approach for Demarcating Requirements in Textual Specifications”, RE 2019

• Bettaieb et al., “Decision Support for Security-Control Identification Using Machine Learning”, REFSQ 2019

• Sleimi et al., “ A Query System for Extracting Requirements-related Information from Legal Texts”, RE 2019

• Sleimi et al., “Automated Extraction of Semantic Legal Metadata using Natural Language Processing”, RE 2018

76

