AI and Software Engineering: Past, Present, and Future

Lionel Briand

http://www.lbriand.info

CSER 2021
AI in SE

- Machine Learning
- Natural Language Processing
- Logic-based Reasoning
- Search
 - Metaheuristic
 - Exhaustive
 - Evolutionary Computing
 - CP, SAT, SMT
1991

Predicting faults in flight dynamics software

Colleagues and friends:
“Machine learning? Why would you want to apply this? This is not serious.”
Objectives

- Report on many years of experience about leveraging AI on industrial research SE projects.

- **Personal experience**, not a survey.

- Partial presentation (very much so).

- Focus on real problems, real solutions, in real contexts.

- **Example projects** and lessons learned.
< ~2000

Making software development predictable
Context

- Software development data repositories were few.
- Data available to researchers was scarce and hard to use.
- Research focused on resource and defect prediction.
- Hundreds of research papers.
Evolving Telecom Systems

For each type of Change Request (CR) involving a class:
- Number of CRs
- Lines of code added and deleted in this class
- Number of CPs involving this class
- Total number of files changed in CRs
- Total number of tests failed in CRs
- Total number of developers involved in CRs
- Total number of past CRs of the developers

Class complexity
- Class size
- Coupling
- Cohesion
- ...

Class change and fault history:
For each type of CR involving this class
And for the past three releases:
- number of CRs (n-1, n-2, n-3)

Machine Learning

Faulty
1.0

Not Faulty
0.0

Erik Arisholm

Eivind Johannessen

Tree Maps – Class Level
Cost-Effectiveness

Process → Change, fault, human, product Data → Learning fault patterns → Fault Patterns

Additional V&V → Ranking, classification → Focus V&V
Mapping predictions to V&V practices is not easy
ML for Prediction: Benefits

• Some machine learning techniques, such as random forests, tend to be more accurate than classical statistical techniques, e.g., based on regression.

• More flexible and robust (less assumptions), less prone to overfitting, etc.

• As larger amounts of data became increasingly available, their application became more widespread.

• Mining Software Repositories

• Many more applications: Test selection and prioritization, flaky tests, requirements identification and compliance, etc.
ML for Prediction: Challenges

• Building and maintaining a corporate prediction system.

• We are predicting moving targets as development practices and systems evolve quickly.

• Lots of papers on how to build prediction models.

• Very few papers on how to effectively use such prediction models, their benefits, etc.

• How to use them in a cost-effective way is far from obvious.
> \approx 2000

The rise of Search-Based SE (SBSE)
Why SBSE?

• After decades of research, there were no scalable, practical solutions for many automation problems.

• The community realized that many automation problems could be re-expressed as search problems.

• **Stochastic optimization, Meta-heuristic search.**

• Increasing realization that Search-Based Software Engineering has a much wider potential and is a research topic in itself.

Harman and Jones, “Search-Based Software Engineering”, 2001
Optimization

Find a value x^* which minimises (or maximises) the objective/fitness function f over a search space X:

$$\forall x \in X : f(x^*) \leq f(x)$$

- No closed-form analytical description
- Black-box optimization
- Meta-heuristic search
Genetic Algorithms (GAs)

Genetic Algorithm: Population-based, search algorithm inspired by evolution theory

Natural selection: Individuals that best fit the natural environment survive

Reproduction: Surviving individuals generate offsprings (next generation)

Mutation: Offsprings inherit properties of their parents with some mutations

Iteration: Generation after generation, the new offspring fit better the environment than their parents
The first time I read about genetic algorithms, meta-heuristic search ...

My first reaction: "You must be kidding"
Example: Key-points Detection

- Automatically detecting key-points in an image or a video, e.g., face recognition, drowsiness detection

 - **Key-point Detection DNNs (KP-DNNs)** are widely used to detect key-points in an image

- It is essential to check how accurate KP-DNNs are when applied to various test data

18 Ground truth

Predicted
Problem Definition

- In the drowsiness or gaze detection problem, each Key-Point (KP) may be highly important for safety

- Each KP leads to a requirement and test objective

- For our subject DNN, we have 27 requirements

- **Goal:** cause the DNN to mis-predict as many key-points as possible

- **Solution:** many-objective search algorithms combined with simulator

UI Haq et al., “Automatic Test Suite Generation for Key-points Detection DNNs Using Many-Objective Search”, ACM ISSTA 2021
Overview

Search-based Test Data Generation Process

- Input Generator
 - Input (vector)
 - Fitness Score (Error Value)
- DNN
 - Actual Key-points Positions
 - Predicted Key-points Positions
- Simulator
 - Test Image
 - Most Critical Test Input
- Fitness Calculator
 - Key-points Positions

Summary:

1. Input Generator generates input (vector) as input data.
2. DNN predicts key-points positions.
3. Actual key-points positions are compared with the predicted positions.
4. Fitness score, which is an error value, is calculated.
5. The most critical test input is determined based on the fitness score.

Diagram highlights the process flow from input generation to determining the most critical test input.
MOSA: Many-Objective Search-based Test Generation

Not all (non-dominated) solutions are optimal for the purpose of testing.

These points are better than others.

Panichella et. al.
ICST 2015
Results

- Our approach is effective in generating test suites that cause the DNN to severely mispredict more than 93% of all key-points on average.

- Not all mispredictions can be considered failures …

- Some key-points are more severely predicted than others, detailed analysis revealed two reasons:
 - Under-representation of some key-points (hidden) in the training data
 - Large variation in the shape and size of the mouth across different 3D models (more training needed)
Interpretation

Representative rules derived from the regression tree for KP26
(M: Model-ID, P: Pitch, R: Roll, Y: Yaw, NE: Normalized Error)

<table>
<thead>
<tr>
<th>Image Characteristics Condition</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 9 \land P < 18.41$</td>
<td>0.04</td>
</tr>
<tr>
<td>$M = 9 \land P \geq 18.41 \land R < -22.31 \land Y < 17.06$</td>
<td>0.26</td>
</tr>
<tr>
<td>$M = 9 \land P \geq 18.41 \land R < -22.31 \land 17.06 \leq Y < 19$</td>
<td>0.71</td>
</tr>
<tr>
<td>$M = 9 \land P \geq 18.41 \land R < -22.31 \land Y \geq 19$</td>
<td>0.36</td>
</tr>
</tbody>
</table>

- Regression trees

- Detailed analysis to find the root causes of high NE values, e.g., shadow on the location of KP26 is the cause of high error (NE) values

- The average MAE from all the trees is 0.01 (far less than the pre-defined threshold: 0.05) with average tree size of 25.7. Excellent accuracy, reasonable size.
SBSE Applications

- Many applications turned out to be promising: Requirements prioritization, refactoring, test automation, program repair, etc.

- My first SBSE paper: “Using genetic algorithms and coupling measures to devise optimal integration test orders.” SEKE’02

- Many articles since then …
SBSE: Benefits

- Effective automation mechanism for a wide set of SE problems.
- Potentially high scalability: No exhaustive search.
- Can be effective under certain conditions: Search landscape, fitness computation, etc.
- Can be effectively parallelized.
SBSE: Challenges

- Performance can be an issue in large, high-dimensionality search spaces.
- Computationally expensive fitness functions, e.g., simulations.
- Validation is experimental and computationally expensive.
- Many problems require dedicated, tailored search algorithms, e.g., many-objective search in testing.
- Devising the right search algorithm for a given problem requires expertise and experiments.
- Devising the right fitness functions is often a trade-off and is a trial and error process.
> \sim \text{2004}

Increasingly Powerful Natural Language Processing
NLP

• Process and analyze large amounts of natural language data.

• Rule-based versus **statistical NLP** (based on machine learning).

• **Preprocessing**: Tokenizer, sentence splitter, POS tagger.

• **Parsing**: Constituency, dependency, semantic.

• NLP has made **huge leaps forward** (e.g., language models).

Arnaoudova et al., “The Use of Text Retrieval and Natural Language Processing in Software Engineering”, ICSE’15
Why NLP?

• Significant documentation of many kinds in natural language …

• Example: NL Requirements

 • are **prominent** throughout industry sectors, even safety-critical ones,

 • are **not fading away** any time soon.
Why NLP?

• Check well-formedness of NL artifacts

• Extract useful information from NL artifacts

• Check consistency and completeness of NL artifacts

• Understand relationship and dependencies between NL artifacts (e.g., traceability)
Experiences in Requirements Engineering

• Conformance of requirements with templates. (Arora et al.)

• Impact analysis of requirements changes (Arora et al., Nejati et al.)

• Identification and demarcation of requirements in large documents. (Abualhaija et al.)

• Requirements-driven system testing. (Wang et al.)
Context

Automotive Embedded Systems

- Small but safety critical systems
- Traceability from requirements to system test cases (ISO 26262)
- Requirements act as a contract
- Many requirements changes, leading to negotiations
Traceability

• In many sectors, traceability between requirements and test cases is **required by standards**, customers, certifiers ...

• Requirements **change**, and therefore test cases as well.

• Huge traceability **matrices** are built and maintained manually.

• Academic work on **automatically matching** requirements and test cases is not sufficiently accurate or practical.
Problem

Automatically verify the compliance of software systems with their functional requirements in a cost-effective way
Objective

Support the Generation of System Test Cases from Requirements in Natural Language

Traceability is a by-product

Problem

Textual descriptions are often ambiguous, incomplete, and not analyzable automatically.
Compromise?

Stick to natural language but …

Restrict its usage so as to make it amenable to NLP for system testing purposes

Find the right balance
Restricted Use Case Specifications

- Use Case Modeling is widely used
- Restricted Use Case Modeling (RUCM)
- Experiments: RUCM yields better use cases
- Compliance is tool-supported (NLP)
- More analyzable with NLP

Yue et al. ACM TOSEM, 2013
Precondition: The system has been initialized

Basic Flow

1. The SeatSensor SENTS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.
RUCM Specifications Example

Precondition: The system has been initialized

Basic Flow

1. The SeatSensor **SENDS** the weight **TO** the system.
2. **INCLUDE USE CASE** Self Diagnosis.
3. The system **VALIDATES THAT** no error has been detected.
4. The system **VALIDATES THAT** the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system **SENDS** the occupancy status **TO** AirbagControlUnit.

Alternative Flow

RFS 4.

1. **IF** the weight is above 1 Kg **THEN**
2. The system sets the occupancy status to child.
3. …
4. **RESUME STEP 6.**
Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child.
3. ...
4. RESUME STEP 6.
Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child.
3. ...
4. RESUME STEP 6.
Test Model

"no error has been detected"
"the weight is above 20 Kg"
"the weight is above 1 Kg"
Automated Generation of System Test Cases for Embedded Systems from Requirements in NL

(Wang et al.)

Constraints capturing the meaning of conditions

Error.allInstances() ->forall(i | i.isDetected = false)

https://sntsvv.github.io/UMTG/

Executable Test Cases
Precondition: The system has been initialized.
The SeatSensor SENDS the weight TO the system.

Path condition:

System.allInstances()->forAll(s | s-initialized = true)
AND System.allInstances()->forAll(s | s-initialized = true)
AND Error.allInstances()->forAll(e | e.isDetected = false)
AND System.allInstances()
->forAll(s | s.occupancyStatus = Occupancy::Adult)

Test inputs:

<table>
<thead>
<tr>
<th>BodySense</th>
<th>errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialized = true</td>
<td></td>
</tr>
<tr>
<td>occupancyStatus = Adult</td>
<td></td>
</tr>
<tr>
<td>weight = 40</td>
<td></td>
</tr>
<tr>
<td>TemperatureError</td>
<td></td>
</tr>
<tr>
<td>isDetected = false</td>
<td></td>
</tr>
<tr>
<td>VoltageError</td>
<td></td>
</tr>
<tr>
<td>isDetected = false</td>
<td></td>
</tr>
</tbody>
</table>
Challenge

Typically dozens of constraints

Engineers need help in defining constraints
Automatically Derive Formal Constraints

“The system VALIDATES THAT no error has been detected.”

(Wang et al., 2020)

Based on NLP

Error.allInstances() -> forall (i | i.isDetected = false)
OCLgen Solution

1. determine the role of words in a sentence (Semantic Role Labeling)

 actor affected by the verb
 “The system sets the occupancy status to adult.”

 final state

2. match words in the sentence with concepts in the domain model

3. generate the OCL constraint using a verb-specific transformation rule

 BodySense.allInstances()
 ->forAll(i | i.occupancyStatus = Occupancy::Adult)
NLP in SE: Summary

- Increasingly powerful, many applications
- **Wide variation** across domain practices and documents.
- Inherent **ambiguity and inconsistency** of natural language.
- Relevant data is usually spread across artifacts.
- Designing the **right NLP pipeline** in not easy.
- NLP components are not fully accurate.
- **Human** in the loop.
Combining Strengths
Multidisciplinary Approaches

- **Single-technology approaches rarely work in practice**

 - Meta-heuristic search, Machine learning

 - NLP

 - Solvers, e.g., CP, SMT

 - Statistical approaches, e.g., sensitivity analysis

 - System and environment modeling and simulation
System monitors gas leaks and fire in oil extraction platforms

Drivers
(Software-Hardware Interface)

Control Modules

Real-Time Operating System

Multicore Architecture

Alarm Devices
(Hardware)
RTES: Concurrent Tasks

Each task has a deadline (i.e., latest finishing time) w.r.t. its arrival time

Some task properties depend on the environment, some are design choices

Tasks can trigger other tasks, and can share computational resources with other tasks
Stress Testing

IEC 61508 deems stress testing as highly recommended for SIL 3-4.

Stress Testing: “Testing in which a system is subjected to [...] harsh inputs [...] with the intention of breaking it”

— Boris Beizer

Arrival times for aperiodic tasks
Worst-case scenarios wrt. missing deadlines

Table B.6 – Performance testing
(referenced by tables A.5 and A.6)

<table>
<thead>
<tr>
<th>Technique/Measure*</th>
<th>Ref</th>
<th>SIL1</th>
<th>SIL2</th>
<th>SIL3</th>
<th>SIL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Avalanche/stress testing</td>
<td>C.5.21</td>
<td>R</td>
<td>R</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>2 Response timings and memory constraints</td>
<td>C.5.22</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>3 Performance requirements</td>
<td>C.5.19</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
</tbody>
</table>

* Appropriate techniques/measures shall be selected according to the safety integrity level.

IEC 61508 deems stress testing as highly recommended for SIL 3-4.
Finding Stress Test Cases is Hard

j_0, j_1, j_2 arrive at at_0, at_1, at_2 and must finish before dl_0, dl_1, dl_2

j_1 can miss its deadline dl_1 depending on when at_2 occurs!

A sequence of arrival times which is likely to violate a task deadline characterizes a stress test case
Challenges and Solutions

- **Ranges for arrival times** form a very large input space
- Task interdependencies and properties constrain what parts of the space are feasible
- **Solution:** We re-expressed the problem as a constraint optimization problem and used a combination of constraint programming (CP, IBM CPLEX) and meta-heuristic search (GA)
- **GA** is scalable and CP offers guarantees
The key idea behind GA+CP is to run complete searches with CP in the neighbourhood of solutions found by GA.
Conclusions
The Road Ahead

• AI plays a key role in automating many software engineering tasks and helping decision support

• Real solutions usually involve several techniques, combined to achieve the best trade-offs.

• Real solutions strike a balance in terms of scalability, practicality, applicability, and optimal results.

• Research in this field cannot be oblivious to context (e.g., domain): Working assumptions, desirable trade-offs …

• We need more multi-disciplinary research driven by (well-defined) problems in context.
AI and Software Engineering: Past, Present, and Future

Lionel Briand

http://www.lbriand.info

CSER 2021
References
Selected References

- Di Alesio et al. “Combining genetic algorithms and constraint programming to support stress testing of task deadlines”, ACM Transactions on Software Engineering and Methodology, 2015

- Soltana et al., “Practical Constraint Solving for Generating System Test Data”, ACM TOSEM, 2020

- Ul Haq et al., “Automatic Test Suite Generation for Key-points Detection DNNs Using Many-Objective Search”, ACM ISSTA 2021

- Yue et al., “Facilitating the transition from use case models to analysis models: Approach and experiments.”, ACM TOSEM, 2013

Other References
References: CPS testing

- Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers: Scalable Search Using Surrogate Models”, ASE 2014
- Ben Abdessalem et al., “Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search”, ASE 2018
References: System Testing

- Wang et al., “Automatic generation of system test cases from use case specifications”, ISSTA 2015

- Wang et al., “Oracles for Testing Software Timeliness with Uncertainty”, ACM TOSEM, 2019

- Shin et al., “Test case prioritization for acceptance testing of cyber-physical systems”, ISSTA 2018

- Soltana et al., “Practical Constraint Solving for Generating System Test Data”, ACM TOSEM, 2020

References: Stress Testing

- Di Alesio et al. “Combining genetic algorithms and constraint programming to support stress testing of task deadlines”, ACM Transactions on Software Engineering and Methodology, 2015
References: Security Testing

- Jan et al., Automatic Generation of Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE Transactions on Software Engineering (TSE), 2019

- Appelt et al., Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. IEEE International Symposium on Software Reliability Engineering (ISSRE 2017)

References: Requirements

- Arora et al., “An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction”, ACM TOSEM, 2019
- Sleimi et al., “A Query System for Extracting Requirements-related Information from Legal Texts”, RE 2019
- Sleimi et al., “Automated Extraction of Semantic Legal Metadata using Natural Language Processing”, RE 2018