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1991

Predicting faults in flight dynamics 
software
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Colleagues and friends: 
“Machine learning? 

Why would you want to apply this? 
This is not serious.”



Objectives
• Report on many years of experience about leveraging 

AI on industrial research SE projects.

• Personal experience, not a survey.

• Partial presentation (very much so).

• Focus on real problems, real solutions, in real 
contexts.

• Example projects and lessons learned.
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< ~2000

Making software 
development predictable
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Context

• Software development data repositories were few.

• Data available to researchers was scarce and hard to use.

• Research focused on resource and defect prediction.

• Hundreds of research papers.
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Evolving Telecom Systems
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Class complexity
- Class size
- Coupling
- Cohesion
- …

For each type of Change Request (CR) involving a 
class:
- Number of CRs
- Lines of code added and deleted in this class
- Number of CPs involving this class
- Total number of files changed in CRs
- Total number of tests failed in CRs
- Total number of developers involved in CRs
- Total number of past CRs of the developers

1.0

0.0Not Faulty

Faulty

Machine
Learning

Class change and fault history:
For each type of CR involving this class
And for the past three releases:
- number of CRs (n-1, n-2, n-3)

Arisholm et al. Journal of Systems and Software, 2010
Erik

Arisholm
Eivind

Johannessen



Tree Maps – Class Level
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Cost-Effectiveness
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Actionable?
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Process
Change, fault, human, 

product
Data

Learning
fault patterns

Fault
Patterns

Focus V&VRanking, 
classification

Additional V&V

Mapping predictions to V&V practices is not easy



ML for Prediction: Benefits

• Some machine learning techniques, such as random forests, tend to be 
more accurate than classical statistical techniques, e.g., based on 
regression.

• More flexible and robust (less assumptions), less prone to overfitting, etc. 

• As larger amounts of data became increasingly available, their 
application became more widespread.

• Mining Software Repositories

• Many more applications: Test selection and prioritization, flaky tests, 
requirements identification and compliance, etc. 
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ML for Prediction: Challenges

• Building and maintaining a corporate prediction system.

• We are predicting moving targets as development practices 
and systems evolve quickly. 

• Lots of papers on how to build prediction models.

• Very few papers on how to effectively use such prediction 
models, their benefits, etc. 

• How to use them in a cost-effective way is far from obvious.
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> ~2000

The rise of Search-Based SE 
(SBSE)
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Why SBSE?

• After decades of research, there were no scalable, practical 
solutions for many automation problems.

• The community realized that many automation problems 
could be re-expressed as search problems.

• Stochastic optimization, Meta-heuristic search.

• Increasing realization that Search-Based Software 
Engineering has a much wider potential and is a research 
topic in itself. 

14

Harman and Jones, “Search-Based Software Engineering”, 2001



Optimization

Local Optimum

Global Optimum

M
in

im
ize

Find a value x* which minimises (or maximises) the objective/fitness
function f over a search space X:

∀ x ∈ X : f(x*) ⩽ f(x)
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• No closed-form analytical 
description

• Black-box optimization
• Meta-heuristic search



Genetic Algorithms (GAs)

Genetic Algorithm: Population-based, search algorithm
inspired be evolution theory

Natural selection: Individuals that best 
fit the natural environment survive

Reproduction: surviving individuals 
generate offsprings (next generation) 

Mutation: offsprings inherits 
properties of their parents with some 
mutations

Iteration: generation after generation 
the new offspring fit better the 
environment than their parents
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~1995

The first time I read about genetic 
algorithms, meta-heuristic search …
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My first reaction: 
“You must be kidding”



Example: Key-points Detection

• Automatically detecting key-points in 
an image or a video, e.g., face 
recognition, drowsiness detection

• Key-point Detection DNNs (KP-DNNs) are 
widely used to detect key-points in an image

• It is essential to check how accurate 
KP-DNNs are when applied to various 
test data
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Ground truth
Predicted



Problem Definition
• In the drowsiness or gaze detection problem, each Key-Point (KP) may be 

highly important for safety

• Each KP leads to a requirement and test objective

• For our subject DNN, we have 27 requirements 

• Goal: cause the DNN to mis-predict as many key-points as possible

• Solution: many-objective search algorithms combined with simulator

19

Fitash
Ul Haq

Donghwan 
Shin

Ul Haq et al., “Automatic Test Suite Generation for Key-
points Detection DNNs Using Many-Objective Search”, 
ACM ISSTA 2021



Overview
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Input Generator Simulator
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MOSA: Many-Objective Search-
based Test Generation
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Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

These points are
better than others

Panichella et. al.
ICST 2015



Results

• Our approach is effective in generating test suites that cause the DNN to 
severely mispredict more than 93% of all key-points on average

• Not all mispredictions can be considered failures …

• Some key-points are more severely predicted than others, detailed 
analysis revealed two reasons:

• Under-representation of some key-points (hidden) in the training data

• Large variation in the shape and size of the mouth across different 3D 
models (more training needed)
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Interpretation

• Regression trees

• Detailed analysis to find the root causes of high NE values, e.g., shadow on the location of 
KP26 is the cause of high error (NE) values

• The average MAE from all the trees is 0.01 (far less than the pre-defined threshold: 0.05) 
with average tree size of 25.7. Excellent accuracy, reasonable size. 
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Image Characteristics Condition NE

! = 9 ∧ # < 18.41 0.04
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % < 17.06 0.26
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ 17.06 ≤ % < 19 0.71
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % ≥ 19 0.36

Representative rules derived from the regression tree for KP26
(M: Model-ID, P: Pitch, R: Roll, Y: Yaw, NE: Normalized Error)

(A) A test image satisfying 
the first condition

(B) A test image satisfying 
the third condition

NE = 0.013 NE = 0.89



SBSE Applications

• Many applications turned out to be promising: Requirements 
prioritization, refactoring, test automation, program repair, 
etc. 

• My first SBSE paper: “Using genetic algorithms and coupling 
measures to devise optimal integration test orders.” SEKE’02

• Many articles since then …
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SBSE: Benefits

• Effective automation mechanism for a wide set of SE 
problems.

• Potentially high scalability: No exhaustive search. 

• Can be effective under certain conditions: Search landscape, 
fitness computation, etc. 

• Can be effectively parallelized.
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SBSE: Challenges

• Performance can be an issue in large, high-dimensionality search spaces 

• Computationally expensive fitness functions, e.g., simulations.

• Validation is experimental and computationally expensive.

• Many problems require dedicated, tailored search algorithms, e.g., many-
objective search in testing.

• Devising the right search algorithm for a given problem requires expertise and 
experiments.

• Devising the right fitness functions is often a trade-off and is a trial and error 
process.
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> ~2004

Increasingly Powerful
Natural Language 

Processing

27



NLP
• Process and analyze large amounts of natural language data.

• Rule-based versus statistical NLP (based on machine 
learning).

• Preprocessing: Tokenizer, sentence splitter, POS tagger.

• Parsing: Constituency, dependency, semantic.

• NLP has made huge leaps forward (e.g., language models).
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Arnaoudova et al., “The Use of Text Retrieval and Natural Language Processing in Software Engineering”, ICSE’15



Why NLP?

• Significant documentation of many kinds in natural 
language …

• Example: NL Requirements 

• are prominent throughout industry sectors, even safety-
critical ones,

• are not fading away any time soon.
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Why NLP?

• Check well-formedness of NL artifacts

• Extract useful information from NL artifacts

• Check consistency and completeness of NL artifacts

• Understand relationship and dependencies between NL 
artifacts (e.g., traceability)
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Experiences in Requirements 
Engineering

• Conformance of requirements with templates. (Arora et 
al.)

• Impact analysis of requirements changes (Arora et al., 
Nejati et al.)

• Identification and demarcation of requirements in large 
documents. (Abualhaija et al.)

• Requirements-driven system testing. (Wang et al.)
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Context

Automotive Embedded Systems
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• Small but safety critical systems
• Traceability from requirements to system test cases 

(ISO 26262)
• Requirements act as a contract
• Many requirements changes, leading to negotiations



• In many sectors, traceability between requirements and 
test cases is required by standards, customers, certifiers 
...

• Requirements change, and therefore test cases as well.

• Huge traceability matrices are built and maintained 
manually.

• Academic work on automatically matching requirements 
and test cases is not sufficiently accurate or practical.

Traceability
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Problem

Automatically verify the compliance of

software systems with their functional 

requirements in a cost-effective way
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Objective 

Support the Generation of
System Test Cases from 

Requirements in Natural Language

Traceability is a by-product

35

Fabrizio
Pastore

Chunhui
Wang

Wang et al., “Automatic Generation of Acceptance Test 
Cases from Use Case Specifications: an NLP-based 
Approach”, IEEE TSE, 2020



Textual descriptions are often ambiguous, 
Incomplete, and not analyzable automatically

Problem

36



Stick to natural language but …

Compromise?

Restrict its usage so as to make it amenable 
to NLP for system testing purposes

Find the right balance
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• Restricted Use Case Modeling (RUCM)

• Experiments: RUCM yields better use cases

Yue et al. ACM TOSEM, 2013

Restricted Use Case 
Specifications

• More analyzable with NLP

• Use Case Modeling is widely used

• Compliance is tool-supported (NLP)
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RUCM Specifications Example

Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis. 
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult. 
6. The system SENDS the occupancy status TO AirbagControlUnit. 

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP
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RUCM Specifications Example
Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis. 
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult. 
6. The system SENDS the occupancy status TO AirbagControlUnit. 

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP
Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child. 
3. …
4. RESUME STEP 6. 40



Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis. 
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult. 
6. The system SENDS the occupancy status TO AirbagControlUnit. 

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child. 
3. …
4. RESUME STEP 6.

NLP for information extraction

DOMAIN ENTITY

41



Precondition: The system has been initialized

Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis. 
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult. 
6. The system SENDS the occupancy status TO AirbagControlUnit. 

Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN
2. The system sets the occupancy status to child. 
3. …
4. RESUME STEP 6.

CONSTRAINT

NLP for information extraction
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UseCaseStart

Input

Condition

Condition

Output

Exit

Condition

Internal

Internal

Include"no error has been detected"

"the weight is above 20 Kg"

"the weight is above 1 Kg"

Weight
DomainEntityTest Model



Use Case 
Specifications

Executable Test Cases

Constraints capturing
the meaning of 

conditions
Domain 
Model

UMTG

Error.allInstances()
->forAll( i | i.isDetected = false) 

Automated Generation of System Test Cases
for Embedded Systems from Requirements in NL

https://sntsvv.github.io/UMTG/
(Wang et al.)

https://sntsvv.github.io/UMTG/


UseCaseStart

Input

Condition

Condition

Output

Exit

Condition

Internal

Internal

Include INCLUDE USE CASE Self Diagnosis. 

IF the weight is above 1 Kg THEN

The SeatSensor SENDS the weight TO the system.

The system sets the occupancy status to adult. 

The system SENDS the occupant class TO AirbagControlUnit. 

The system VALIDATES THAT no error has been detected.

The system sets the occupancy status to child. 

The system VALIDATES THAT the weight is above 20 Kg.

Precondition: The system has been initialized.

OCL

OCL

OCL

OCL

System.allInstances()->forAll( s | s.initialized = true )
AND System.allInstances()->forAll( s | s.initialized = true )
AND Error.allInstances()->forAll( e | e.isDetected = false)
AND System.allInstances()

->forAll( s | s.occupancyStatus = Occupancy::Adult )

Path condition: 

Constraint 
Solving

(PLEDGE)

Test inputs:

https://sites.google.com/view/hybridoclsolver/

Soltana et al.



Challenge

Typically dozens of constraints

Engineers need help in defining constraints
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Automatically Derive Formal Constraints

“The system VALIDATES THAT
no error has been detected.”

Error.allInstances()->forAll( i | i.isDetected = false) 

OCLgen Based on NLP

49

(Wang et al., 2020)



OCLgen Solution

2. match words in the sentence with concepts in the domain model

BodySense.allInstances()
->forAll( i | i.occupancyStatus = Occupancy::Adult)

3. generate the OCL constraint using a verb-specific transformation rule

“The system sets the occupancy status to adult.”

actor affected by the verb final state

1. determine the role of words in a sentence (Semantic Role Labeling)



NLP in SE: Summary

• Increasingly powerful, many applications

• Wide variation across domain practices and documents.

• Inherent ambiguity and inconsistency of natural language.

• Relevant data is usually spread across artifacts.

• Designing the right NLP pipeline in not easy.

• NLP components are not fully accurate.

• Human in the loop.
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Combining Strengths
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Multidisciplinary Approaches

• Single-technology approaches rarely work in practice

• Meta-heuristic search, Machine learning

• NLP

• Solvers, e.g., CP, SMT

• Statistical approaches, e.g., sensitivity analysis

• System and environment modeling and simulation
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Search+CP Example
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Drivers 
(Software-Hardware Interface) 

Control Modules 

Alarm Devices 
(Hardware) 

Multicore Architecture  

 
Real-Time Operating System 

 

System monitors gas leaks and fire in 
oil extraction platforms 



RTES: Concurrent Tasks
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Tasks can trigger other tasks, and 
can share computational resources 
with other tasks

Each task has a deadline (i.e., latest 
finishing time) w.r.t. its arrival time

Some task properties depend on 
the environment, some are design 
choices
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Stress Testing
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IEC 61508 deems stress testing as 
highly recommended for SIL 3-4

Stress Testing: “Testing in which a system is subjected to […]
harsh inputs […] with the intention of breaking it”

— Boris Beizer

Arrival times for aperiodic tasks Worst-case scenarios 
wrt. missing deadlines



Finding Stress Test Cases is Hard
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A sequence of arrival times which is likely to 
violate a task deadline characterizes a stress 
test case

periodic triggered aperiodic periodic triggered aperiodic



Challenges and Solutions

• Ranges for arrival times form a very large input space

• Task interdependencies and properties constrain what 
parts of the space are feasible

• Solution: We re-expressed the problem as a constraint 
optimization problem and used a combination of constraint 
programming (CP, IBM CPLEX) and meta-heuristic search 
(GA)

• GA is scalable and CP offers guarantees
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Combining CP and GA
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Search Space
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The key idea behind GA+CP is to run complete searches 
with CP in the neighbourhood of solutions found by GA

Di Alesio et al., “Combining genetic 
algorithms and constraint programming to 
support stress testing of task deadlines”, 

ACM TOSEM 2015

Shiva
Nejati

Stefano
Di Alesio



Conclusions
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The Road Ahead

• AI plays a key role in automating many software engineering tasks and 
helping decision support

• Real solutions usually involve several techniques, combined to achieve the 
best trade-offs.  

• Real solutions strike a balance in terms of scalability, practicality, 
applicability, and optimal results.

• Research in this field cannot be oblivious to context (e.g., domain): Working 
assumptions, desirable trade-offs …

• We need more multi-disciplinary research driven by (well-defined) problems 
in context.
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