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Introduction

® Big companies like Google make lots of changes per minute
® They run thousands of tests to verify code changes
® They follow Continuous Integration (CI) process
o Requires rerunning tests for each change
® It delays release in a rapid release environment

® Test prioritization can help



Related works

® Some studies focused on pre-submit test-case selection

® Others conducted test case prioritization after submitting the change

e Kim and Porter were pioneers in using historical test failures for test
prioritization

® Flbaum et al. used a combination of pre-submit selection and post-submit

prioritization



Our contribution

® Design a new test prioritization algorithm
O Bases on the hypothesis that bugs might cluster
O  One failing test might be a clue for the other ones

® Analyze testing datasets features in big projects



Prioritization Algorithms

BatchedFIFO (baseline)
GoogleTCP
DynaQFocus
DynaQFocusFail



BatchedFifo Algorithm

Algorithm 1: BatchedFifo

Result: BatchedFifo get builds one after another and runs
one test from each.
1 while There are more builds do

2 fill dispatchQueue with b builds;
3 while dispatchQueue is not empty do

4 build = dispatchQueue.getNextBuild();
5 run(build.getNextTest());
6 end

7 end



BatchedFifo Simulation
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GoogleTCP Algorithm

Algorithm 2: GoogleTCP

Result: GoogleTCP prioritizes the test cases for the next
run after running the test cases inside the dispatch
queue each time

1 while There are more builds do

2

3
4

5

6

fill dispatchQueue with b builds and order the test cases
in each build based on their previous failures;
while dispatchQueue is not empty do
build = dispatchQueue.getNextBuild();
run(build.getNextTest());

end

7 end
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DynaQZFocus

Algorithm 3: DynaQFocus

10

11

12

Result: DynaQFocus focuses on code changes that have a
failing test, prioritizing the tests of this build above
other builds.

/* we run tests from b builds to avoid

starvation */
while There are more builds do

fill dispatchQueue with b builds;

while dispatchQueue is not empty do

build = dispatchQueue.getNextBuild();

verdict = run(build.getNextTest());

/* on pass, go to the next build */

if verdict == failure then

/* focus: run all tests for the current
build */
runAllTests(build);

end

end

13 end



DynaQFocus Simulation
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DynaQFocusFail

Algorithm 4: DynaQFocusFail

1
2
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Result: DynaQFocusFail prioritizes the tests in builds based
on their previous failures and also focuses on a
buggy build.

while There are more builds do

fill dispatchQueue with b builds with tests prioritized in

each build based on their previous failures. The more a
test fails previously, the higher it will be in order;
while dispatchQueue is not empty do

build = dispatchQueue.getNextBuild();

verdict = run(build.getNextBuild());

/* on pass, go to the next build */

if verdict == failure then

/* focus: run all tests for the current
build */
runAllTests(build);

end

end

12 end



DynaQFocusFail Simulation




DynaQFocusFail Simulation

D C
C B
—| B A




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




DynaQFocusFail Simulation




Datasets overviews

® Google
O 3.5 million tests
o 8,952 failing tests
m Test failure ratio = 0.25%
o Large builds
m  Consisting of up to 65,000 tests
® Chrome
0 5.2 million tests
o 810,514 failing tests
m Test failure ratio = 15.4%
o Small builds
m  Consisting of up to 139 tests



Evaluation Metric

® GainedRunOrder

® PercentageGain



GainedRunOrder

GAINEDRUNORDER (A) = RunOrderFail(FIFO) — RunOrderFail(A)

41



PercentageGain

PercentageGain(A1l, A2) = 1 — GAINEDRUNORDER(A1)
/GAINEDRUNORDER(A2)



Experimental Results



Median GainedRunOrder Results

Google Chrome
GoogleTCP 8927 57
DynaQFocus 310 113

DynaQFocusFail 9407 221



PercentageGain Against Google TCP

Google Chrome
DynaQFocus -96.52% 98.24%

DynaQZFocusFail 5.37% 287.71%



Discussion



Build Level Failure Distribution

® Ratio of failures in each build
o If the majority of tests are failures => prioritization does not help
o If there are a few failures per build => focusing idea does not help

® How many builds we have for different number of test failures?



Build-level Failure Distribution
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Build-level Failure Distribution of Google
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Build-level Failure Distribution of Chrome
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Conclusion

We hypothesized that test failures cluster and the focusing idea might help
DynaQUFocusFail performs the best

Results on Chrome are better than Google because of the failure ratio

We have to consider failure distribution for the future designs

emad.fallahzadeh@concordia.ca peter.rigby@concordia.ca
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Fails Per Build
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Fails Per Build

Chrome test failures time series
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Google Dataset Failures to Passes
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Chrome Dataset Failures to Passes
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