DynaQZFocus: Focusing test prioritization on builds
with test failures

Emad Fallahzadeh and Peter C Rigby
Concordia University
CSER 2021

emad.fallahzadeh@concordia.ca https://users.encs.concordia.ca/~pcr/
peter.rigby@concordia.ca

https://users.encs.concordia.ca/~pcr/
mailto:peter.rigby@concordia.ca
mailto:peter.rigby@concordia.ca

Introduction

® Big companies like Google make lots of changes per minute
® They run thousands of tests to verify code changes
® They follow Continuous Integration (CI) process
o Requires rerunning tests for each change
® It delays release in a rapid release environment

® Test prioritization can help

Related works

® Some studies focused on pre-submit test-case selection

® Others conducted test case prioritization after submitting the change

e Kim and Porter were pioneers in using historical test failures for test
prioritization

® Flbaum et al. used a combination of pre-submit selection and post-submit

prioritization

Our contribution

® Design a new test prioritization algorithm
O Bases on the hypothesis that bugs might cluster
O One failing test might be a clue for the other ones

® Analyze testing datasets features in big projects

Prioritization Algorithms

BatchedFIFO (baseline)
GoogleTCP
DynaQFocus
DynaQFocusFail

BatchedFifo Algorithm

Algorithm 1: BatchedFifo

Result: BatchedFifo get builds one after another and runs
one test from each.
1 while There are more builds do

2 fill dispatchQueue with b builds;
3 while dispatchQueue is not empty do

4 build = dispatchQueue.getNextBuild();
5 run(build.getNextTest());
6 end

7 end

BatchedFifo Simulation

BatchedFifo Simulation

BatchedFifo Simulation

BatchedFifo Simulation

BatchedFifo Simulation

GoogleTCP Algorithm

Algorithm 2: GoogleTCP

Result: GoogleTCP prioritizes the test cases for the next
run after running the test cases inside the dispatch
queue each time

1 while There are more builds do

2

3
4

5

6

fill dispatchQueue with b builds and order the test cases
in each build based on their previous failures;
while dispatchQueue is not empty do
build = dispatchQueue.getNextBuild();
run(build.getNextTest());

end

7 end

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

GoogleTCP Simulation

DynaQZFocus

Algorithm 3: DynaQFocus

10

11

12

Result: DynaQFocus focuses on code changes that have a
failing test, prioritizing the tests of this build above
other builds.

/* we run tests from b builds to avoid

starvation */
while There are more builds do

fill dispatchQueue with b builds;

while dispatchQueue is not empty do

build = dispatchQueue.getNextBuild();

verdict = run(build.getNextTest());

/* on pass, go to the next build */

if verdict == failure then

/* focus: run all tests for the current
build */
runAllTests(build);

end

end

13 end

DynaQFocus Simulation

DynaQFocus Simulation

DynaQFocus Simulation

DynaQFocus Simulation

DynaQFocus Simulation

DynaQFocus Simulation

DynaQFocusFail

Algorithm 4: DynaQFocusFail

1
2

9

10

11

Result: DynaQFocusFail prioritizes the tests in builds based
on their previous failures and also focuses on a
buggy build.

while There are more builds do

fill dispatchQueue with b builds with tests prioritized in

each build based on their previous failures. The more a
test fails previously, the higher it will be in order;
while dispatchQueue is not empty do

build = dispatchQueue.getNextBuild();

verdict = run(build.getNextBuild());

/* on pass, go to the next build */

if verdict == failure then

/* focus: run all tests for the current
build */
runAllTests(build);

end

end

12 end

DynaQFocusFail Simulation

DynaQFocusFail Simulation

D C
C B
—| B A

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

DynaQFocusFail Simulation

Datasets overviews

® Google
O 3.5 million tests
o 8,952 failing tests
m Test failure ratio = 0.25%
o Large builds
m Consisting of up to 65,000 tests
® Chrome
0 5.2 million tests
o 810,514 failing tests
m Test failure ratio = 15.4%
o Small builds
m Consisting of up to 139 tests

Evaluation Metric

® GainedRunOrder

® PercentageGain

GainedRunOrder

GAINEDRUNORDER (A) = RunOrderFail(FIFO) — RunOrderFail(A)

41

PercentageGain

PercentageGain(A1l, A2) = 1 — GAINEDRUNORDER(A1)
/GAINEDRUNORDER(A2)

Experimental Results

Median GainedRunOrder Results

Google Chrome
GoogleTCP 8927 57
DynaQFocus 310 113

DynaQFocusFail 9407 221

PercentageGain Against Google TCP

Google Chrome
DynaQFocus -96.52% 98.24%

DynaQZFocusFail 5.37% 287.71%

Discussion

Build Level Failure Distribution

® Ratio of failures in each build
o If the majority of tests are failures => prioritization does not help
o If there are a few failures per build => focusing idea does not help

® How many builds we have for different number of test failures?

Build-level Failure Distribution

g !
S
~N
8 o]
S [}
- o
o) g
3 o
2 8 M
+
m E
o
L o _|
1) o~N
()
’_ g
()] _—
= O —_— '
3 -
& ' :
— I
o |
& v —
o]
£
=}
z
oq i
'
I
I
'
s rad S —
T T
Google Chrome

48

Build-level Failure Distribution of Google

300

250

200

Number of Builds
=
w
(=]

100

50

1

2 3 4 5 6 7 8

I.I.l_.-__-_-__________---__-_____________
10 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 31 33 35 40 42 43 44 45 46 48 63 78 107 123 183 197 198 200 205 206 211 219 229

Number of Failing Tests

49

Build-level Failure Distribution of Chrome

80000

70000

60000

50000

Number of Builds
8
3
o

30000

20000

10000

1

2 3

5

6 7 8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 56 88 131 139
Number of Failing Tests

w

Conclusion

We hypothesized that test failures cluster and the focusing idea might help
DynaQUFocusFail performs the best

Results on Chrome are better than Google because of the failure ratio

We have to consider failure distribution for the future designs

emad.fallahzadeh@concordia.ca peter.rigby@concordia.ca

mailto:peter.rigby@concordia.ca
mailto:peter.rigby@concordia.ca

Fails Per Build

0 5
=

Google test failures time series

200
|

150
|

100
|

| w b

0 200 400 600 800
Builds Ordered by Run

1000

1200

Fails Per Build

Chrome test failures time series

140

120
|

100
|

80

60

40

20

f I I I I
0 50000 100000 150000 200000

Builds Ordered by Run

Google Dataset Failures to Passes

20000

g & &8 ¢

- -
$3S9] jJO J2quINN

Builds Ordered by Run

m failure tests W passed tests

Chrome Dataset Failures to Passes

50

(=]
o0

S3s3a] Jo JoquinN

20

10

T¥8S6T
E6EE6T
S¥606T
L6v88T
610981
T09€8T
ESTI8T
S0L8LT
LSTILT
608€ELT
TOETLT
€T6891
S9¥991
LT0V9T
69ST9T
TCI6ST
€£99ST
STTYsT
LLLTST
6ZE6VT
T889YT
EEVVYT
S861IYT
LES6ET
680LET
TroveT
€6TZET
SvL6ZT
LezLet
6v8¥ZT
Tovzet
€S66TT
SO0SLIT
LSOSTT
609211
191011
€TLLOT
592501
L18201
69€00T
TC6L6
€LVS6
S20€6
LLSO06
62188
18958
€€Te
S8L08
LEEBL
688SL
TYveL
£€660L
SvS89
L6099
6%9€9
10219
€SL8S
S0€9S
LS8ES
60vTS
19681
€159V
S90tt
LI9TY
6916€
TCL9E
ELTVE
SZ8IE
LLE6T
62692
82
€€0ZC
S8S6T
LETLT
6891
147441
€646
SYEL
L68Y
(3474
T

Builds Ordered by Run

= passed tests

m failure tests

