
Breaking Type Safety in Go:
An empirical study on the use of the
unsafe package

Diego Elias Costa, Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab

1

The Go programming language
• Major programming language

• Clean syntax
• C-like performance
• Modern language features

• Go has a strong and static type-system
• Type-safe by design

2

Go is memory-safe…

3

…unless you use the unsafe package

The unsafe package
• Step around the type-safety of Go programs

4

import "unsafe"

// Pointer arithmetic – (C-style)
p = unsafe.Pointer(uintptr(p) + offset)

// Convert between two types (without compiler checks)
func Float64bits(f float64) uint64 {

return *(*uint64)(unsafe.Pointer(&f))
}

The unsafe package
Pros
• Avoid compiler checks
• Low-level memory

manipulation
• Interface with system calls

5

Cons
• Avoid compiler checks
• Risk of non-portability
• No guarantees of compatibility
• Easy to write bad code

Beware of the unsafe package!

6

Beware of the unsafe package!

7

Do Go developers use the unsafe package?

Studying breaking type-safety in Go

8

Prevalence? Why? Consequences?

Studied projects

9

2590most popular
Go software projects

Do developers use unsafe?

10

24% of projects use
unsafe in their code

All
domains

% Projects
using unsafe

Bindings 88%
Blockchain 62%

ML Libraries 60%

100%

User Interface 50%
Database 47%

…

Security 12%
Multimedia 8%

Why developers use unsafe?

11

System Calls

30%

45%

Efficient Casting

Go
+ Others25%

Atomic Operations
Pointer Arithmetic

Reflection
Inspecting Object Size

…

C code

Performance

System
Integration

% of Usages (sampled)

Consequences of unsafe

12

Deployment restriction (20 projects)

“I wanted to use this package within a Google App Engine project, and due to
package ”unsafe” being used, it is not compatible”

Consequences of unsafe

13

Deployment restriction (20 projects)
Runtime errors (16 projects)

Consequences of unsafe

14

Deployment restriction (20 projects)
Runtime errors (16 projects)
Wrong API usage (13 projects)

…and the list goes on

To summarize

16

Prevalence? Why? Consequences?

24% of
projects use
unsafe

System
Integration

Performance
Optimization

Higher risk of
- Restrictions
- Runtime errors
- Bugs
- Breakages

Feedback from the Go Team

Other team members were more optimistic that developers would
avoid or could implement their project without using package unsafe.

I think this result will justify spending more time on making package
unsafe easier to use.

Matthew Dempsky, maintainer of the GO compiler

17

Impact on the GO Language

18

Wrong slice conversion
is one of the most
common API misuses

New static analysis was released with Go 1.16

Language updates scheduled for Go 1.17

19

To summarize
Prevalence? Why? Consequences?

24% of
projects use
unsafe

System
Integration

Performance
Optimization

Higher risk of
- Restrictions
- Runtime errors
- Bugs
- Breakages

Impact on the GO Language

Go 1.17

Wrong slice conversion
is one of the most
common API misuses

New static analysis was released with Go 1.16

Language updates scheduled for Go 1.17

diego.costa@concordia.ca

@DiegoEliasCosta

