
Mixsets to
Implement
Variability
of Software
Product
Lines

Presenta(on for Consor(um for So0ware Engineering
Research (CSER)

Abdulaziz Algablan – University of ODawa
PhD in computer science

May 14, 2021

Mixsets

• Definition: ”A mixset is a named set of code/model fragments that can be mixed
into a software system to add a feature, variant, or concern”

• Goal
• Facilitate SPL variability in both modeling and programming languages.
• Handle variability at model level.
• Specify relationships between variant models.
• Apply one mechanism to both abstract model and “embedded” native code.

2

Advantages of Mixsets

• Combines the best of two approaches
• Annotative

• Variation lives within the code.
• Like #ifdef directives of C preprocessor

• Compositional
• Features are separate from the base code, which is shared by all features.
• Similar to FOP (Feature Oriented Programming).

• Unified/Uniform
• Can be applied across all entities in a language, including composition mechanisms such as

aspects
• Encapsulates variability modeling

• Mixsets can represent feature models.
• Direct mapping of feature models in source code.
• Explicit management of relationships between reused variable units, or mixsets. 3

Required
Mechanisms

• First-class units in the language.
• Sub-en4ty of other language

en44es.

Mixsets to
model

variability

• Compositional technique to merge
different pieces of software.

• Umple uses mixins to compose
identical entities.

Artifact
composer

• Conditional parsing of variable
fragments of the code based on
supplemented parameters.

Conditional
compilation

4

Umple

• The approach is implemented in Umple.
• A language that generates code based on modeling abstracNons
• Textual, with real-Nme rendering and ediNng of diagrams
• Many modeling constructs, including:

• Class models (aRributes, associaNons, and generalizaNons)
• State machine models (events, hierarchical states, transiNons)
• Traits

• Can incorporate and generate code from Java, C++, PHP and Ruby
• Analyses models to find many types of problems

• Try UmpleOnline via hDp://try.umple.org/

5

http://try.umple.org/

Mixsets
Example
• A bank SPL.
• Blue fragments are

annotative.
• Green fragments are

compositional.
• Compositional fragments

can be in separate files.

1 class Bank {
2 1 -- * Account;
3
4
5
6

 mixset Multibranch
 {
 1 -- 1..* Branch;
 }

7 }
8

9
10

mixset Multibranch {
 class Branch {

11
12

 Integer id; String address;
 }

13 }
14

15 class Account {
16 owner; Integer number; Integer balance;
17 mixset Multibranch { * -- 1 Branch;}
18 }
19

20 trait InterestBearingAccount {
21 Float interestRate;
22 }
23

24 class DepositAccount {
25 isA Account;
26 mixset OverdraftsAllowed {
27 Integer overdraftLimit;
28 isA InterestBearingAccount;
29 }
30 }
31

32 class LoanAccount {
33 isA Account, InterestBearingAccount;
34 }

6

Mixsets for Feature Modeling

1
2
3
4
5
6
7
8
9
10
11

require subfeature [GSMProtocol opt Mp3Recording
 and Playback and AudioFormat opt Camera];
mixset GSMProtocol {
 require subfeature [GSM1800 opt GSM1900]; }
mixset AudioFormat {
 require subfeature [1..2 of {Mp3,Wav}]; }
mixset Mp3Recording { require [Mp3]; }
mixset Camera { require subfeature [Resolution]; }
mixset Resolution{
 require subfeature [0..1 of {Res21MP, Res31MP, Res50MP}];}
use GSMProtocol; use GSM1900; use Playback; use AudioFormat;

• A syntax to specify mixsets as features.
• Mixsets do not always map to features
• They can contain reusable (shared) mixsets.

7

Refactor between Annotation/Compositional

• Annotate fragments are treated as
compositional fragments.
• Refactoring from compositional

fragments to annotative fragments is
possible.
• We call this “rewriting” of mixsets.
• Uses the abstract syntax tree (AST) to

refactor mixsets .

8

Fine-grained Variability
in Composi5on

• Extending aspect injection
with labels.
• The code in green box results

from generating Java code
from the code in blue box.

* The example is modified from: Krüger, J., Schroter, I., Kenner, A., Kruczek, C.
& Leich, T. (2016). FeatureCoPP: ComposiMonal AnnotaMons. Proceedings of
the 7th FOSD, 74–84. hRps://doi.org/10.1145/3001867.3001876

9

Case Studies

• Berkeley DB JE
• Reduce the code size and hook methods.

• Refactoring Umple into a feature-driven software system
• It is still in progress.
• Usefulness of annotative fragments to identify variable elements.
• Automate refactoring to compositional mixsets.

10

Limitations & Open Problems
• Lack of SPL variability awareness
• Na(ve support of SPL variability in the modeling language.
• Formal analysis of SPL variability

• Modularity of fine-grained variability
• Expression-level variability

11

Demo

12

Conclusion

13

• Mixsets offer a combined variability
mechanism
• Seek smooth transformation between

annotative and compositional fragments.

• Unified to work on both models and native
code
• Offer mechanism to model variability as

feature models

Questions?

