Expanding the Reach of Fuzzing

Caroline Lemieux

University of British Columbia
(currently postdoc @ Microsoft Research NYC)

Talk at CSER
Nov 215t 2021

My Work

My Work

Background on Fuzzing

Performance Bugs

| 2
4

Exploring Core Logic

Smart Generators

Future Directions

Background on Fuzzing

1990s: Random Fuzzing

hen we use basic oper-
ating system facilities,
such as the kernel and
major utility programs,
we expect a high degree
of rcliability. Thesc
parts of the system are used fre-
quently and this frequent use im-
plies that the programs are well-
tested and working correctly. To
make a sy i about

Unix operating system. The project
proceeded in four steps: (1) pro-
grams were constructed to generate
random characters, and to help test
interactive utilities: (2) these pro-
grams were used (o test a large
number of utilities on random
input strings to see if they crashed;
(3) the strings (or types of strings)
that crash these programs were
i fied; and (4) the causes of the

to the Internet worm (the “gets fin-
ger” bug) [2,3] We have found ad-
ditional bugs that might indicate
future security holes. Third, some
of the crashes were caused by input
that might be carelessly typed—
some strange and unexpected er-
rors were uncovered by this
method of testing. Fourth, we
sometimes inadvertently feed pro-
grams noisy input (e.g., trying to

Barton P. Miller, Lars Fredriksen and Bryan So

An Empirical Study of the

the correctness of a program, we
should probably use some form of
formal verification. While the tech-
nology for program verification is
advancing, it has not yet reached
the point where it is easy to apply
(or commonly applied) to large sys-
tems.

A recent experience led us to be-
lieve that, while formal verification
of a complete set of operating sys-
tem utilities was t0o onerous a task,
there was still a need for some form
of more complete testing: On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash. These programs included a
significant number of basic operat-
ing system utilities. It is reasonable
to expect that basic utilities should
not crash (“core dump”); on receiv-
ing unusual input, they might exit
with minimal error messages, but
they should not crash. This experi-
ence led us 10 believe that there
might be serious bugs lurking in the
systems that we regularly used.

This scenario motivated a sys-
tematic test of the utility programs
running on various versions of the

program crashes were identified
and the common mistakes that
cause these crashes were catego-
rized. As a result of testing almost
90 different utility programs on
seven versions of Unix™, we were
able to crash more than 24% of
these programs. Our testing in-
cluded versions of Unix that under-
went commercial product testing. A
yproduct of this project is a list of
bug reports (and fixes) for the
crashed programs and a set of tools
available to the systems community.

There is a rich body of research
on program testing and verifica-
tion. Our approach is not a substi-
tute for a formal verification or
testing procedures, but rather an
inexpensive mechanism to identify
bugs and increase overall system
reliability. We are using a coarse
notion of correctness in our study.
A program is detected as faulty
only if it crashs or hangs (loops in-
definitely). Our goal is to comple-
ment, not replace, existing test pro-
cedures.

This type of study is important
for several reasons: First, it contrib-
utes to the testing community a
large list of real bugs. These bugs
can provide test cases against which
researchers can evaluate more so-
phisticated testing and verification
strategies. Second, one of the bugs
that we found was caused by the
same programming practice that
provided one of the security holes

Unix is a trademark of AT&T Bell Laborato-
ies

edit or view an object module). In
these cases, we would like some
meaningful and predictable re-
sponse. Fifth, noisy phone lines are
a reality, and major utilities (like
shells and editors) should not crash
because of them. Last, we were in-
terested in the interactions between
our random testing and more tradi-
tional industrial software testing.

While our testing surategy sounds
somewhat naive, its ability to dis-
cover fatal program bugs is impres-
sive. If we consider a program to be
a complex finite state machine,
then our testing strategy can be
thought of as a random walk
through the state space, searching
for undefined states. Similar tech-
niques have been used in areas such
as network protocols and CPU
cache testing. When testing net-
work protocols, a module can be
inserted in the data stream. ’
module randomly perturbs the
packets (either destroying them or
modifying them) to test the proto-
col's error detection and recovery
features. Random testing has been
used in evaluating complex hard-
ware, such as multiprocessor cache
coherence protocols [4]. The state
space of the device, when combined
with the memory architecture, is
large enough that it is difficult to
generate systematic tests. In the
multiprocessor example, random
generation of test cases helped
cover a large part of the state space
and simplify the generation of
cases.

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

Reliability of

Utilities

COMMUNICATIONS OF THE ACM/ Decerber 1990/Vol.33, No.12

1990s: Random Fuzzing

Random Source >

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

1990s: Random Fuzzing

Random Source > Al <88>

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

1990s: Random Fuzzing

Random Source > <78>

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

1990s: Random Fuzzing

Random Source > <83>

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21

1990s: Random Fuzzing

Random Source

> /\\ /\A

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ bc

Segmentation Fault

$

10

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21

1990s: Random Fuzzing

Random Source

> /\\ /\A

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ bc

Segmentation Fault

$

11

1990s: Random Fuzzing

fuzz

program under test

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

11/21/21

Initial
—p

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

' A
ick mutate
P R 3 execute %

4 Interesting Feedback? Execution
PuUtn Feedback,

Caroline Lemieux --- Expanding the Reach of Fuzzing 13

Save

11/21/21

Initial
—p

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

Caroline Lemieux --- Expanding the Reach of Fuzzing

14

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

Lt'al. pick N mutate

>

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

t $ xmllint
execute
l Execution

Feedback

Initial - 'l
S ick
P > mutate M <a->b

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

11/21/21

Initial
—)

P

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

pick

Caroline Lemieux --- Expanding the Reach of Fuzzing

e =
A <a->b

l Branches

execute

Covered

$ xmllint

tags_match(input)

-

tag ey “b”

17

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

Initial " : '
) ick
P > mutate M <a->b

tags_match(input)

tag ey “b”

tag == ((a”

tags_match(input)

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 18

11/21/21

Initial
—

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

ick

tags_match(input)

Save

tags_match(input)

- New Branch Covered?
<aa>b

Caroline Lemieux --- Expanding the Reach of Fuzzing 19

11/21/21

Initial "

—

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

ick

tags_match(input)

Save

tags_match(input)

- New Branch Covered?
<aa>b

Caroline Lemieux --- Expanding the Reach of Fuzzing 20

Coverage-Guided Fuzzing

Initial pick mutate l execute

& |nput,’ >

Save

4 Interesting Feedback? Execution
PUtn Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

Modern Fuzzing

Coverage-Guided Fuzzing

' A
ick mutate
p , : execute | g

_M‘ Interesting Feedback? Execution
Feedback,

n
>

save

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 22

Modern Fuzzing

Coverage-Guided Fuzzing

ick _mutate @ - execute
—pick Input
A

save

_m Interesting Feedback? Execution
Feedback

Generator-Based Fuzzing

A
Input Generator =—— —_—

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

23

Generator-Based Fuzzing

Input Generator

11/21/21

Generator-Based Fuzzing

Input Generator

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

25

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

26

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

27

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

28

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

29

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

30

Generator-Based Fuzzing

def genXML(random):

11/21/21

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():

node.addText(random.nextString())
return node

v

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

31

Generator-Based Fuzzing

Input Generator

written by developer
conducting testing
(or reuse a suitable one)

Modern Fuzzing

Coverage-Guided Fuzzing

ick _mutate @ - execute
—pick Input
A

save

_m Interesting Feedback? Execution
Feedback

Generator-Based Fuzzing

A
Input Generator =—— —_—

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

33

Modern Fuzzing

Coverage-Guided Fuzzing Generator-Based Fuzzing

Drawback: malformed inputs

Drawback: user effort to make effective

" Exploring Core Logic me,

NS~— Smart Generators

Input Generator —_— A:‘

. --1*$
‘ B _ Interesting Feedback? Execution

gty Feedback, '

save

Drawback: fixed testing goal (coverage)

Performance Bugs %

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 34

Background on Fuzzing

11/21/21

Background on Fuzzing

Exploring Core Logic =me

@

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

36

11/21/21

Background on Fuzzing

Exploring Core Logic
Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

37

11/21/21

Performance Bugs

Caroline Lemieux --- Expanding the Reach of Fuzzing

38

11/21/21

Performance Bugs

Caroline Lemieux --- Expanding the Reach of Fuzzing

39

Example Program: Word Frequency (wf)

» Count frequency of words in string
input:
the quick brown the dog

output:

brown: 1
dog: 1
quick: 1
the: 2

Example Program: Word Frequency (wf)

for word in words

 Count frequency of words in string - S
) id = wor
INput: entry = table[id]

the quick brown the dog

while entry != None

output:

brown: 1
dog: 1
quick: 1
the: 2

entry.count += 1

entry = entry.next
break

table[id] = new (word=word,

count=1, next=table[id])

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

11/21/21

wf Performance Response

e Usual case:

the quick brown the dog

Edge | # Hits_
A

B
C
D

for word in words

id = (word)
entry = table[id]

entry = entry.next entry.count += 1
break

table[id] = new (word=word,

count=1, next=table[id])

Caroline Lemieux --- Expanding the Reach of Fuzzing

42

11/21/21

wf Performance Response

e Usual case:

the quick brown the dog

Edge | # Hits_
A 4

B
C
D

for word in words

id = (word)
entry = table[id]

entry = entry.next entry.count += 1
break

table[id] = new (word=word,

count=1, next=table[id])

Caroline Lemieux --- Expanding the Reach of Fuzzing

43

wf Performance Response

» Usual case: Edge | # Hits for word in words
A 4
the quick brown the dog B 1 id = (word)
C entry = table[id]
D

entry = entry.next entry.count += 1
break

table[id] = new (word=word,

count=1, next=table[id])

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

wf Performance Response

* Usual case: EEm for word in words
A 4
the quick brown the dog B 1 id = (word)
C 0 entry = table[id]
D 1

entry = entry.next entry.count += 1
break

table[id] = new (word=word,

count=1, next=table[id])

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

wf Performance Response

* Usual case: Edge | # Hits for word in words
A 4
the quick brown the dog B 1 i) = (word)
C 0 entry = table[id]
D 1

 Hash collisions: | Edge | # Hits |

A 7
t ?t xt at$ #a))t Qwaa B 21
C 21
D 0

entry.count += 1

entry = entry.next
break

table[id] = new (word=word,

count=1, next=table[id])

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

11/21/21

wf Performance Response

e Usual case:

the quick brown the dog

 Hash collisions:

t ?t xt at$ #a))t Qwaa

 Small words:

thequickbrow

Edge | # Hits_
A 4

O N w

1
0
1

A 7
B 21
C 21
D 0

for word in words

id = (word)
entry = table[id]

mm entry = entry.next entry.count += 1
break

N W >

D 0

Caroline Lemieux --- Expanding the Reach of Fuzzing

table[id] = new (word=word,

count=1, next=table[id])

47

11/21/21

wf Performance Response

 Hash collisions:

t ?t xt at$ #a))t Qwaa

 Small words:

thequilickbrow

Edge | # Hits_ —> Pathological performance behavior

/; 271 characterized by a few CFG edges.
C 21

D 0

A 12

B

C

D 0

Caroline Lemieux --- Expanding the Reach of Fuzzing

48

11/21/21

wf Performance Response

 Hash collisions:

t ?t xt at$ #a))t Qwaa

 Small words:

thequilickbrow

Edge | # Hits_ - Pathological performance behavior
/; 271 characterized by a few CFG edges.
C 21
5 5 - ldea: maximize CFG edge hit count
independently.
| Edge | # Hits
A 12
B
C
D 0

Caroline Lemieux --- Expanding the Reach of Fuzzing

49

Coverage-Guided Fuzzing

Initial pick mutate l execute

& |nput,’ >

Save

4 Interesting Feedback? Execution
PUtn Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

11/21/21

Initial
—)

save

PerfFuzz

ick mutate
P R ', execute

r—m
r—m
it

Interesting Feedback?
Input,” n =

Caroline Lemieux --- Expanding the Reach of Fuzzing

>

—

51

11/21/21

Initial
—)

save

PerfFuzz

ick mutate
P R ', execute

r—m
r—m
it

Maximizes # hits

: : for some edge?
Input,” n

Caroline Lemieux --- Expanding the Reach of Fuzzing

>

—

52

11/21/21

Initial
—

PerfFuzz

pick input
maximizing
hits for
some edge mutate execute -
» I T
A
cave Lo

Maximizes # hits

: : for some edge?
Input,” n

Fm
it

—

Caroline Lemieux --- Expanding the Reach of Fuzzing 53

wf results: PerfFuzz Finds True Worst Cases

wf results: PerfFuzz Finds True Worst Cases

SlowFuzz (single objective maximization) worst case:

trttsfolOertsfortxxtsfortxx

wf results: PerfFuzz Finds True Worst Cases

SlowFuzz (single objective maximization) worst case:

trttsfolOertsfortxxtsfortxx
PerfFuzz worst case:

t <81>v M@t <8o>!1"P@t <80>It t* Rn t t t t t t t t t

11/21/21

wf results: PerfFuzz Finds True Worst Cases

PerfFuzz worst case:

t <81>v M@t <8o>!1"P@t <80>It t* Rn t t t t t t t t t

Caroline Lemieux --- Expanding the Reach of Fuzzing

57

11/21/21

Initial
—

PerfFuzz

pick input
maximizing
hits for
some edge mutate execute -
» I T
A
cave Lo

Maximizes # hits

: : for some edge?
Input,” n

Fm
it

—

Caroline Lemieux --- Expanding the Reach of Fuzzing 58

Observation: Algorithm is More General

Initial
—p

Save

11/21/21

pick input
maximizing
hits for

'
some edge l

mutate
» R e » %

Maximizes # hits

: : for some edge?
Inputn’ < P——

Caroline Lemieux --- Expanding the Reach of Fuzzing 59

Observation: Algorithm is More General

pick input
maximizing
value for N\
Initial some key I
mutate
7, | 3 execute
A

save
Maximizes value

: - for some key?
Inputn’ < P——

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

11/21/21

Initial
—

Save

FuzzFactory

pick input
maximizing
value for

>

some key mutate '> execute
n

Maximizes value

: - for some key?
Input,” y

e

F

Key

Caroline Lemieux --- Expanding the Reach of Fuzzing

Value

>

—

With Fuzzfactory, we could build
- SlowFuzz

—> PerfFuzz

- Validity Fuzzing

- Maximizing Memory Usages
- "Hard Comparison” Fuzzer

- Fuzzer targeting diffs

11/21/21

Background on Fuzzing

Exploring Core Logic
Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

63

11/21/21

PerfFuzz
N Lemieux, Padhye, Sen & Song. ISSTA ‘18

o> 3@ FuzzFactory

® & o o o pPadhye, Lemieux, Sen, Laurent & Vijayakumar. OOPSLA '19

pick mutate ' - _execute |

save

_ Interesting Feedback? Execution
Feedback,

Generalize “feedback” with map-based abstraction
- new applications for CGF algorithm

Caroline Lemieux --- Expanding the Reach of Fuzzing

64

11/21/21

Background on Fuzzing

Exploring Core Logic =me

@

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

65

11/21/21

Background on Fuzzing

Performance Bugs %’

Exploring Core Logic &
@

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

66

11/21/21

Background on Fuzzing

Performance Bugs

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

U

@

67

Where Are the Fuzzer-Found Bugs?

Input Validation

Core Logic

Where Are the Fuzzer-Found Bugs?

2 'Thput Validation

Core Logic

Problem: Random Mutations Ruin Structure

Initial
—

Save

' A
ick mutate
P R | execute %

11/21/21

4 Interesting Feedback? Execution
PUtn Feedback,

Caroline Lemieux --- Expanding the Reach of Fuzzing

70

11/21/21

Problem: Random Mutations Ruin Structure

mutate
J

Caroline Lemieux --- Expanding the Reach of Fuzzing

71

11/21/21

Problem: Random Mutations Ruin Structure

mutate l

& |nput,’

mutate

<foo>>>>foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

72

11/21/21

How to Retain Important Structure?

mutate
J

mutate P
<foo>>>>foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

73

FairFuzz: Filter Mutations Likely to Ruin Structure

seeds pick input compute +
hitting mutate with

Initial rare branch branch mask -
= » - =

save
Interesting Feedback? Execution
Input,’ n -
Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 74

Can we get higher-level mutations?
with more information about input structure?

Initial pick mutate execute -
i » I T

save
' N Interesting Feedback? Execution
Input,” y ==
Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 75

Generators as Input Structure Specification

A

Input Generator

11/21/21

How to Get Mutations?

def genXML(random):

tag = random.choice(tags)

node = XMLElement(tag)

num_child = random.nextInt(©, MAX_ CHILDREN)

for 1 in range(©, num_child):
node.addChild(genXML(random))

if random.nextBoolean():
node.addText(random.nextString())

return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

77

11/21/21

Generator: Source of Randomness = Input

def genXML(random):
‘tag = random.choice(tags)
node = XMLElement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(©, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

78

11/21/21

Generator: Source of Randomness = Input

def genXML(random):
random. choice(tags)
- node = XMLElement(tag)
num_child = random.nextInt(©, MAX_ CHILDREN)
for 1 in range(©, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

—
Q
oQ
|

foo

S
T
R

Caroline Lemieux --- Expanding the Reach of Fuzzing

79

11/21/21

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(©, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

foo

S
T
R

Caroline Lemieux --- Expanding the Reach of Fuzzing

80

11/21/21

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)

node = XMLElement(tag)
num_child = random.nextInt(©, MAX_CHILDREN) %
for i in range(©, num_child):
- node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

S
T
R

Caroline Lemieux --- Expanding the Reach of Fuzzing

81

11/21/21

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(©, num_child):
- node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

—Wn

Caroline Lemieux --- Expanding the Reach of Fuzzing

82

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(©, num_child):
node.addChild(genXML(random))
- if random.nextBoolean():

node.addText(random.nextString())
return node Sifee>

Text{"xyz"}

<bar/>
<baz>“xyz”</baz>
</foo>

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 83

11/21/21

Generator: Source of Randomness = Input

def genXML(random):

tag = random.choice(tags)

node = XMLElement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for i in range(©, num_child):
node.addChild(genXML(random))

if random.nextBoolean():
node.addText(random.nextString())

- return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

Text{"xyz"}

<foo>

<bar/>
<baz>“xyz”</baz>
</foo>

84

Source of Randomness

pseudo-random bits:

def genXML{yandom) :

tag = random.choice(tags)
node = XMLElement(tag)
num_child =

for 1 in range(©, num_child):

node. addChlLd(genXMLLnaﬁaom)

if random. nextBooLean()

11/21/21 Caroline Lemieux ---

random.nextInt(0, MAX CHILDREN)

-—
—_
_—
]
——
_—

Infinite Bit-Sequence

0000 0011 0110011001101111 01101111 0000 0010 ...

-
-

-
/

Text{"xyz"}

_—

<foo>

<bar/>
<baz>“xyz”</baz>
</foo>

Expanding the Reach of Fuzzing 85

11/21/21

Bit Mutations = Structured Input Mutations

pseudo-random bits: 0000 0011 0110011001101111 01101111 0000 0010 ...

def genXML{yandom) :

tag = random.choice(tags)
node = XMLElLement(tag) _-"
num_child = random.nextInt(6, MAX CHILDREN)
for i in range(9, num child): _ -~

node. addChlLd(genXMLLnaﬁaom)
if random. nextBooLean() Text{"xyz"}

return - _________ <foo>

<bar/>
<baz>“xyz”</baz>
</foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

86

11/21/21

Bit Mutations = Structured Input Mutations

pseudo-random bits: 0000 0011 0101 0111 0110111101101111 0000 0010 ...

def genXML{yandom) :

Il andon. choicel

node = XMLElement(tag) _-"
num_child = random.nextInt(6, MAX CHILDREN)
for i in range(©, num child): _ -~
node. addChlLd(genXMLLnaﬁaom)) baz
if random. nextBooLean() Text{"xyz"}

<bar/>
<baz>“xyz”</baz>
</woo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

87

Params —— Generator —

Zest: Integrate Generator + CG %

seeds

Initial : ll [N
I F_)lck mutate execute
o » %

save
Interestlng Feedback? Execution

Input B
Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 88

Zest: Integrate Generator + CGF

seeds

execute
Initial ik l input -
— _pick _mutate | P —> Generator —

4 Interesting Feedback? Execution B
arams, Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 89

Save

Zest: Integrate Generator + CGF

seeds
execute N
Initial ik t input
—c, pick, mutate | —» Generator — ",
A
Higher-level mutations via generator
save

4 Interesting Feedback? Execution B
arams, Feedback,

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 90

Zest finds complex semantic bugs

while ((1 0)){
while ((1 0)){ ’,

if ((L 0 -

{ brea . ontinue } ‘ Google Closure Compiler

{ brea
Zest-generated JavaScript input -ﬁﬁ l

lllegalStateException in VarCheck
during optimization

Unreachable statement...
but not dead code!

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing

91

https://en.wikipedia.org/wiki/File:Closure_logo.svg
https://en.wikipedia.org/wiki/File:Closure_logo.svg

11/21/21

Background on Fuzzing

Performance Bugs

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

U

@

92

11/21/21

FlalilplFuzz

FairFuzz
Lemieux & Sen. ASE 18

Zest
Padhye, Lemieux, Sen, Papadakis & Le Traon. ISSTA ‘19

mutate
(o

Structure-aware mutations
- New depth of program exploration

Caroline Lemieux --- Expanding the Reach of Fuzzing

93

11/21/21

Background on Fuzzing

Performance Bugs %’

Exploring Core Logic &
@

Smart Generators

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

94

Smart Generators

@

11/21/21

Background on Fuzzing
Performance Bugs

Exploring Core Logic

Future Directions

Caroline Lemieux --- Expanding the Reach of Fuzzing

96

Likelihood of Generating a Valid Maven File?

def ():

tag = (tags)

node = XMLElement(tag)

num_child = (0, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random))

if ():
node.addText (())

return node

Likelihood of Generating a Valid Maven File?

def genXML(random):

‘tag = r‘andom.choic

node = XMLElement(tag)

num_child = random.nextInt(0,)

for i in range(©, num_child): P(valid)slsubsetllxlsulr:etzllxmxlsubsetnl
ags|™

- node.addChild(genXML (randotirry £

if random.nextBoolean(): @
node.addText(random.nextString())
return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 98

RLCheck: Directly Control the Choices

— Generator
Execution |
Feedback

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 101

A

Directly Control the C/oices

def genXML(random):

tag = |random.choice(tags)

node = XMLElement(tag)
num_child =|random.nextInt(©, MAX_ CHILDREN)

for i in range(©, num_child):
node.addChild(genXML(random))

if
node.addText (random.nextString())

return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 102

11/21/21

Directly Control the C/oices

def genXML(random):

tag =
ent (tag)
dom.nextInt(©, MAX_CHILDREN)
9, num_child):
Ld(genXML(random))

What value to return to
maximize the chance of
generating a valid input?

node.addText
return node

drandom.nextString()

Caroline Lemieux --- Expanding the Reach of Fuzzing

103

What value to return to

maximize the chance of Depends on context
generating a valid input?

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 104

Different Context = Different “Good” Choices

def genXML(random):

‘tag = r‘andom.
node = XMLElLement(tag
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(©, num_child):
- node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())

return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 105

Different Context = Different “Good” Choices

def genXML(random):
‘tag = r‘andom.

node = XMLElLement(tag

num_child = random.nextInt(©, MAX_ CHILDREN)

for 1 in range(©, num_child):
node.addChild(genXML(random))

if random.nextBoolean():
node.addText(random.nextString())

return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 106

Different Context = Different “Good” Choices

def genXML(random):
project |:>tag = r‘andom.
node = XMLElLement(tag
num_child = random.nextInt(©, MAX_ CHILDREN)
for 1 in range(©, num_child):
* node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

dependencies

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 107

Different Context = Different “Good” Choices

def ():

tag = (tags)

node = XMLElement(tag)

num_child = (0, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random))

if ():
node.addText (())

return node

Step 1: Add Context to Generator

def ():

tag = (tags)

node = XMLElement(tag)

num_child = (0, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random))

if ():
node.addText(())

return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 109

Step 1: Add Context to Generator

def (s) :
tag = (tags)
node = XMLElement(tag)

num_child = (9, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random,))
if ():

node.addText(())
return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 110

11/21/21

Step 1: Add Context to Generator

def (s) :
tag = (tags)
node = XMLElement(tag)

num_child = (9, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random,))
if ():

node.addText (())
return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

111

Step 2: Make Choices Based on Context

def (s) :
tag = (tags)
node = XMLElement(tag)

num_child = (9, MAX_CHILDREN)

for 1 in range(©, num_child):
node.addChild((random,))
if ():

node.addText(())
return node

11/21/21

Step 2: Make Choices Based on Context

def

())
tag = (tags,)
node = XMLElement(tag)

num_child = (9, MAX_CHILDREN,

for 1 in range(©, num_child):
node.addChild((random,))
if ():

node.addText (())
return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

113

Our Problem Setting

context [“project”, “2”, “dependencies”, ...

choice space tag = (tags,

Our Problem Setting

State

Action

Sounds Like Reinforcement Learning

é/ State\@

=
\\Actior/

RLCheck Idea: RL Agent At Each Choice Point

def (s) :
tag = (tags,)
node = XMLElement(tag)

num_child = (9, MAX_CHILDREN,)

for 1 in range(©, num_child):
node.addChild((random,))
if ():

node.addText (())
return node

RLCheck Idea: RL Agent At Each Choice Point

def genXML(guide,) :
tag = guide.choice(tags,) —
node = XMLElement(tag)
num_child = guide.nextInt(©, MAX_CHILDREN,) —

for 1 in range(©, num_child):

node.addChild(genXML (random,))
if guide.nextBoolean(): «—
node.addText (guide.nextString() D

return node

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 118

RLCheck: Many More Unique Valid Inputs

150k

—-— QuickCheck

v Zest
©
g 100 Gl o RLCheck
>
)
i
2 s0k-
a)

0_ I ._..-._.I—-..—-..—I...—..._...I_..._..._:...._...._I

Time (min)

Closure Compiler (JS)

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 119

RLCheck: Many More Unique Valid Inputs

150k
—-= QuickCheck

o 30K+ Zest e
= —— RLCheck = 100k

> 20k RLCheck* >

ﬂ) (0]

i)
e Y 50k

= 1 2

a 10k =

01: e P S s ST 0L;
0 i | 2 3 4 5
Time (min)
Ant (XML)
200k]
—-= QuickCheck 150k
Zest

ﬁ 150k P §
© —— RLCheck /'/ = 100k

> o >

o 100k .)

) v

] 1)
50k -

2 50k 2
04 0-

11/21/21

0 g 2 3 4 5
Time (min)

Rhino Compiler (JS)

—-— QuickCheck
Zest
—— RLCheck

Time (min)

Maven (XML)

—-= QuickCheck
Zest
—— RLCheck

o -
————2
o

0 1 2 3 4 5

Time (min)

Closure Compiler (JS)

Caroline Lemieux --- Expanding the Reach of Fuzzing

120

Background on Fuzzing

Performance Bugs

Exploring Core Logic

Future Directions

11/21/21 Caroline Lemieux --- Expanding the Reach of Fuzzing 121

Generator —>.

Execution
Feedback

Separate distribution from user-facing generator
—> faster fuzzing, new synthesis paradigm

RLCheck

RECMESE™ Reddy, Lemieux, Padhye & Sen. ICSE ‘20,

¥ AutoPandas
\ Bavishi, Lemieux, Sen & Stoica. OOPSLA ‘19

Smart Generators

@

Future Directions

So Far: Innovations in Test-Input Generation

N
3

-

Problems Around Test-Input Generation

How do | write a
good test driver?

Test-Input

\Generation
/

11/21/21 Expanding the Reach of Fuzzing 126

Problems Around Test-Input Generation

How do | write a
good test driver?
How do | specify

the structure Test—lnput

of my inputs? \Generation

11/21/21 Expanding the Reach of Fuzzing 127

Problems Around Test-Input Generation

How do | write a
good test driver?
How do | specify

the structure Test—lnput

of my inputs? \Generation

Do | really care
about this bug?

11/21/21 Expanding the Reach of Fuzzing 128

11/21/21

Test-Input
Generation

Automating Fuzzing
Infrastructure

- Test driver synthesis

- Input structure inference
- Bug relevance detection
- Automated bug patching

Caroline Lemieux --- Expanding the Reach of Fuzzing

132

FUDGE

Babic, Bucur, Chen, Ivancic, King,
Kusano, Lemieux, Szekeres, Wang

ESEC/FSE'19 (Industry Track)

11/21/21

Automating Fuzzing
Infrastructure

—> Test driver synthesis

- Input structure inference
- Bug relevance detection
- Automated bug patching

Caroline Lemieux --- Expanding the Reach of Fuzzing

133

FUDGE

Babic, Bucur, Chen, Ivancic, King,
Kusano, Lemieux, Szekeres, Wang

ESEC/FSE'19 (Industry Track)

11/21/21

@—[Slicing]—@—[Synthesis }—@—[Evaluation }—@

Code Code Fuzz target Evaluation
FUDGE UI

200 drivers integrated into open-source projects

- 150 security-improving fixes

Caroline Lemieux --- Expanding the Reach of Fuzzing 134

Arvada

Kulkarni*, Lemieux*, Sen ==

Test-Input
Generation

Automating Fuzzing
Infrastructure

- Test driver synthesis

ASE'21

11/21/21

— |nput structure inference
- Bug relevance detection
- Automated bug patching

Caroline Lemieux --- Expanding the Reach of Fuzzing

135

Arvada

Kulkarni*, Lemieux*, Sen =

while true & false do L = n

L=n;L=(+n &y

Example Strings %I\ 5k ty— t); ty|L = num
sl o R NRE T s Wy | while bool do stmt
S B EE N t;-n| (& +85)
true false n (t,J +tf ; tg—’ t9&t9 I true I false
Oracle W

ASE'21

11/21/21

5x higher recall that SOTA ©

1.27x slowdown ®

Caroline Lemieux --- Expanding the Reach of Fuzzing 136

https://www.carolemieux.com

nteresting Feedback? Execution

Feedback

<&
<«

N

Generalize “feedback” with map-based abstraction
- new bug domains

-utate 5 Input,’

Structure-aware mutations
- New depth of program exploration

clemieux@cs.ubc.ca
W @cestlemieux

11/21/21

Guidance Generator —>.

Execution
Feedback

Separate distribution from user-facing generator
—> faster fuzzing, new synthesis paradigm

Caroline Lemieux --- Expanding the Reach of Fuzzing

137

https://www.carolemieux.com/
mailto:clemieux@cs.ubc.ca

